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Parco Area delle Scienze 181/A, 43124 Parma, Italy.

3Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum
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Abstract

A two-dimensional analysis of the onset of thermal convective instability in a horizontal porous layer with

open upper boundary is carried out. The saturating fluid is non-Newtonian of power-law behaviour and

its flow is represented through a suitable extension of Darcy’s law. A model of temperature-dependent

viscosity is employed where the consistency index is considered as variable, while the power-law index

is assumed to be constant. Numerical data for the neutral stability and for the critical values of a

modified Darcy-Rayleigh number have been obtained. The feasibility of an experimental validation of

the theoretical results predicted by the stability analysis is discussed in detail. An experimental setup

based on a Hele-Shaw cell is described and preliminary results relative to the onset of convective cells

are described. Observed hysteretic effects and deviations from the rheological model are identified as

potential sources of uncertainty.

Keywords: Porous medium; Non-Newtonian fluid; Thermal instability; Hele-Shaw cell; Rayleigh number; Particle

Image Velocimetry (PIV)

1 Introduction

The Rayleigh-Bénard instability of a saturated porous medium has been widely studied in the last decades

(Rees, 2000; Nield and Bejan, 2013). Starting with the pioneering studies of Horton and Rogers (1945)

and of Lapwood (1948), the analysis was extended to the case where the saturating fluid undergoes a

stationary and parallel horizontal flow (Prats, 1966). It was proved that the horizontal flow does not alter

the onset conditions for the thermal instability, which occur when the wave number of the perturbation is

π and the Darcy-Rayleigh number is 4π2. A synthesis of the effects of different boundary conditions on the
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Rayleigh-Bénard instability in a porous medium was provided by Nield (1968). This author investigated

configurations where the porous layer has either impermeable or open boundaries.

It should be mentioned that, while the largest part of the existing literature on this topic is relative to

Newtonian fluids saturating porous media, a few papers extended the results reported by Horton and Rogers

(1945), Lapwood (1948), and Prats (1966) to non-Newtonian fluids. Some authors studied viscoelastic fluids

(Hirata and Ouarzazi, 2010; Delenda et al., 2012), while others were concerned with purely viscous fluids

modelled through a power law (Barletta and Nield, 2011; Nield, 2011a,b; Alloui et al., 2012; Alves and

Barletta, 2013; Barletta and Storesletten, 2016). A recent study has been published about the Rayleigh-

Bénard instability in a porous medium saturated by a Bingham fluid (Rees, 2015).

The aim of this paper is twofold. On the one hand, we further expand the knowledge about onset

of thermal instability in a horizontal porous layer saturated by a power-law fluid. Our attention will be

focussed on the effects on instability of an open upper boundary and of a temperature-dependent apparent

viscosity, thus extending the findings reported in Barletta and Nield (2011) and in Alves and Barletta

(2013). On the other hand, we critically discuss the experimental validation of the theoretical result. The

design of an apparatus based on a Hele-Shaw cell will be illustrated and some early results concerning the

structure of the convection cells will be used as a basis for future developments.

For Newtonian fluids, experimental validation of theoretical models of Rayleigh-Bénard convection in

porous media has been pursued via either Hele-Shaw analogues (e.g., Hartline and Lister, 1977; Cherkaoui

and Wilcock, 2001; Letelier et al., 2016) or direct simulation, using cells or containers filled with a real

porous medium (Buretta and Berman, 1976; Lister, 1990; Howle et al., 1997; Keene and Goldstein, 2015).

The different techniques used for detecting the incipient instability are based on shadography, the modi-

fication of interference fringes of coherent (laser) light due to variations in the refraction index, thermal

flux measurements, the visual observation of smoke lines distorted by the recirculation flow.

On the contrary, there are only few attempts to manage experiments with non-Newtonian fluids (Dar-

bouli et al., 2013), given the added complexity in detecting the proper rheological model and measuring

the correct parameters. The fluid motion during the early instability phase is characterized by small values

of the shear rate; in this range, the rheometers are less accurate, surface effects can be dominant, and the

behaviour of artificial fluids is sometimes markedly different from large shear rates.

In this paper, we illustrate some of the challenges posed by these experiments. Hence, we present

the Hele-Shaw device used to simulate the instability, and the technical solutions adopted for a correct

monitoring of the process and the detection of the instability. We illustrate results of some preliminary

experiments conducted in our installation, which qualitatively confirm our theoretical results. We also

highlight that deviations from the linear instability model can be due to the simplification introduced by

the power-law rheological model, and to the presence of hysteretic effects.

The structure of the paper is as follows. Section 2 presents the linear stability analysis and the de-

termination of the parameters that identify the threshold for the onset of thermally driven convection.

These results are discussed and illustrated graphically in Section 3. Section 4 presents the experimental

setup, describes a preliminary set of experiments, and discusses the main experimental challenges. As a

by-product of our study, a method to infer the power-law model rheological parameters from measurements

2



conducted in the Hele-Shaw cell is illustrated in Appendix A.

2 Mathematical model

We consider a horizontal porous layer with height H. The lower boundary plane is assumed to be imper-

meable and isothermal at temperature T0 +∆T , with ∆T > 0. The upper boundary is considered as open

and subject to a uniform temperature T0.

2.1 Governing equations

Let us assume the validity of Darcy’s law, generalized for non-Newtonian power-law fluids, and of the

Oberbeck-Boussinesq approximation to model the thermal buoyancy force. Then, in a regime of local

thermal equilibrium between the fluid and the solid phase, we can write the local mass, momentum and

energy balance equations as,

∇ · u = 0, (1a)

µ∗

K
|u|n−1u = −∇p− ρ0 g β (T − T0) , (1b)

σ
∂T

∂t
+ u · ∇T = κ∇2T. (1c)

Here, u is the seepage velocity having Cartesian components (u, v, w), T is the temperature and p is the

local difference between the pressure and the hydrostatic pressure, µ∗ is the consistency index of the fluid,

n is the power-law index, K is the permeability, ρ0 is the fluid density at the reference temperature T0, g

is the gravitational acceleration, β is the thermal expansion coefficient of the fluid, σ is the ratio between

the average volumetric heat capacity of the porous medium and the volumetric heat capacity of the fluid,

κ is the average thermal diffusivity of the saturated porous medium.

The boundary conditions can be written as

y = 0 : v = 0, T = T0 +∆T,

y = H :
∂v

∂y
= 0, T = T0, (2)

where (x, y, z) are the Cartesian coordinates, with y denoting the vertical axis. Equation (1b) can be

expressed in its vorticity formulation by evaluating the curl of both sides of this equation, namely

∇×
(
µ∗

K
|u|n−1u

)
= ρ0 g β∇× (T ey) , (3)

where g is the modulus of the gravitational acceleration and ey is the unit vector along the y axis.

The consistency index µ∗ of the power-law fluid is considered as temperature dependent, µ∗ = µ∗(T ).

We will follow Nowak et al. (1982) in assuming a constitutive law for µ∗ expressed as

µ∗(T ) = µ∗
0 [1 + ξ (T − T0)]

−n , (4)
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where µ∗
0 denotes the value of µ∗ at reference temperature T0, and ξ is a fluid property, with units K−1,

expressing the temperature change of the consistency index. On the other hand, the temperature change

of the power-law index n is considered as negligible.

Equations (1)-(5) can be written in a dimensionless form by introducing the scaling,

1

H
(x, y, z) → (x, y, z),

H

κ
u =

H

κ
(u, v, w) → (u, v, w) = u,

κ
σH2

t → t,

T − T0

∆T
→ T, H∇ → ∇, H2∇2 → ∇2. (5)

Thus, we can write

∇ · u = 0, (6a)

∇×
[
η(T ) |u|n−1u

]
= Ra∇× (T ey) , (6b)

∂T

∂t
+ u · ∇T = ∇2T, (6c)

y = 0 : v = 0, T = 1,

y = 1 :
∂v

∂y
= 0, T = 0. (6d)

In Eq. (6b), η(T ) = µ∗/µ∗
0, and Ra is the Rayleigh number defined as

Ra =
ρ0 g β∆T K Hn

µ∗
0 κn

. (7)

We note that η(T ) is a positive function of T such that η(0) = 1.

2.2 Basic solution and stability analysis

A stationary basic solution of Eqs. (6) is

ub = PeF (y)−1/n, vb = 0, wb = 0, Tb = 1− y, (8)

where Pe > 0 is the Péclet number and

F (y) = η(Tb) = η(Tb(y)). (9)

The basic flow given by Eqs. (8) and (9) is two-dimensional, lying on the (x, y) plane, so that it can

be reproduced experimentally by a suitably designed Hele-Shaw cell. Only the instability triggered by

two-dimensional modes of perturbation can be detected by employing experimental observations with the

Hele-Shaw cell. With this understanding, we will carry out the linear stability analysis in a purely two-

dimensional formulation.

The stability of the basic solution (8) can be studied by defining small-amplitude perturbations, namely

(u, v) = (ub, vb) + ε (U, V ), T = Tb + εΘ, (10)

where (U, V ) is the velocity perturbation, Θ is the temperature perturbation, and ε is the perturbation

parameter, such that |ε| ≪ 1. Besides the temperature and velocity fields, we have to consider also the

perturbation of the dimensionless consistency index, namely

η(T ) = η(Tb) + ε η′(Tb)Θ = η(Tb(y)) + ε η′(Tb(y))Θ = F (y)− εF ′(y)Θ, (11)
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where the primes denote derivatives of a function with respect to its argument. Substitution of Eqs. (8)

and (10) and Eq. (11) into Eqs. (6) yields, to O(ε),

∂U

∂x
+

∂V

∂y
= 0, (12a)

F (y)(2n+1)/n

(
n
∂U

∂y
− ∂V

∂x

)
+ F (y)(n+1)/nF ′(y)U

= Pe
[
F ′′(y)F (y)− F ′(y)2

]
Θ+ PeF (y)F ′(y)

∂Θ

∂y
− λF (y)2

∂Θ

∂x
, (12b)

∂Θ

∂t
+ PeF (y)−1/n ∂Θ

∂x
− V = ∇2Θ, (12c)

y = 0 : V = 0, Θ = 0,

y = 1 :
∂V

∂y
= 0, Θ = 0, (12d)

where

λ =
Ra

Pen−1
. (13)

By defining a streamfunction Ψ, such that

U =
∂Ψ

∂y
, V = − ∂Ψ

∂x
, (14)

Eq. (12a) is identically satisfied, while Eqs. (12b)–(12d) can be rewritten as

F (y)(2n+1)/n

(
n
∂2Ψ

∂y2
+

∂2Ψ

∂x2

)
+ F (y)(n+1)/nF ′(y)

∂Ψ

∂y

= Pe
[
F ′′(y)F (y)− F ′(y)2

]
Θ+ PeF (y)F ′(y)

∂Θ

∂y
− λF (y)2

∂Θ

∂x
, (15a)

∂Θ

∂t
+ PeF (y)−1/n ∂Θ

∂x
+

∂Ψ

∂x
= ∇2Θ, (15b)

y = 0 : Ψ = 0, Θ = 0,

y = 1 :
∂Ψ

∂y
= 0, Θ = 0. (15c)

We now write the perturbations in terms of normal modes, namely{
Ψ(x, y, t)

Θ(x, y, t)

}
=

{
f(y)

h(y)

}
exp [i (αx− ωt)] . (16)

Eventually, by employing Eqs. (15) and (16), the eigenvalue stability problem can be written as

F (y)(2n+1)/n
(
n f ′′ − α2f

)
+ F (y)(n+1)/nF ′(y) f ′

= Pe
[
F ′′(y)F (y)− F ′(y)2

]
h+ PeF (y)F ′(y)h′ − i α λF (y)2 h, (17a)

h′′ −
[
α2 − i ω + i α PeF (y)−1/n

]
h = i α f, (17b)

y = 0 : f = 0, h = 0,

y = 1 : f ′ = 0, h = 0. (17c)
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Up to this point, function F (y) has been left undetermined. In fact, on account of Eqs. (5) and (9), this

function reflects the model of temperature-dependent consistency index adopted.

On account of Eqs. (4) and (5), η(T ) can be expressed as

η(T ) = (1 + γ RaT )−n = (1 + γ λPen−1 T )−n, (18)

where γ is a non-negative dimensionless parameter tuning the departure from a constant consistency index

model,

γ =
µ∗
0 κn ξ

ρ0 g β K Hn
. (19)

As a consequence of Eqs. (9) and (18), one has

F (y) = [1 + γ Ra (1− y)]−n =
[
1 + γ λPen−1 (1− y)

]−n
. (20)

In fact, Eq. (18) is a non-Newtonian extension of the linear fluidity model for Newtonian fluids employed

in previous stability analyses of flow in porous media (Barletta and Nield, 2012; Barletta et al., 2016).

In the limiting case γ → 0, Eq. (20) predicts F (y) = 1, so that Eqs. (17) are drastically simplified to

yield

n f ′′ − α2 f + i α λh = 0, (21a)

h′′ −
[
α2 + i (αPe− ω)

]
h− i α f = 0, (21b)

y = 0 : f = 0, h = 0, (21c)

y = 1 : f ′ = 0, h = 0. (21d)

Equations (21a) and (21b) are equivalent to those obtained by Alves and Barletta (2013) for the case of

impermeable boundaries. The boundary conditions are obviously different. However, with an argument

similar to that employed by Alves and Barletta (2013), it can be proved that Eqs. (21) satisfy the principle

of exchange of stabilities. Thus, this eigenvalue problem can be solved for ω = αPe to obtain the limiting

value of λ as a function of α for γ → 0. In this limit, Eqs. (21) ensure that λ(α) is independent of Pe.

We point out that, in the limiting case γ → 0, we have ub = Pe for every y ∈ [0, 1]. Hence, the physical

meaning of the principle of exchange of stabilities is that the dimensionless phase velocity of perturbations,

ω/α, coincides with the dimensionless basic flow velocity, ub = Pe. In other words, the dimensionless phase

velocity of perturbations is zero in the comoving reference frame, namely in the reference frame moving

along the x direction with dimensionless velocity ub = Pe. Things are more complicated when γ is nonzero.

In fact, the velocity profile ub is non-uniform. Nonetheless, one can define an average dimensionless velocity

of the basic flow,

Pe∗ =

∫ 1

0
ub dy = Pe+

γλ

2
Pen, (22)

where Eqs. (8) and (20) have been used. Then, one may define a comoving reference frame as the reference

frame moving along the x direction with dimensionless velocity Pe∗. However, one can prove numerically

that the dimensionless phase velocity of perturbations in the comoving reference frame is, in general,

nonzero. This means that, in the general case described by Eqs. (17), the principle of exchange of stabilities

does not hold.
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Figure 1: Neutral stability curves for Pe = 10 and different values of γ and n
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Figure 2: Plots of λcr as a function of γ, for different values of n and Pe
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Figure 3: Plots of Racr as a function of Pe for different values of γ and n
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Figure 4: αcr as function of γ for different values of Pe and n
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n αcr λcr

0.2 1.63398 17.4558

0.4 1.89159 20.5453

0.6 2.06923 23.0037

0.8 2.20912 25.1486

1.0 2.32621 27.0976

1.2 2.42779 28.9096

1.4 2.51801 30.6186

1.6 2.59952 32.2468

1.8 2.67409 33.8092

2.0 2.74298 35.3168

Table 1: Values of αcr and λcr as functions of n for the case γ = 0

2.3 Numerical method

Either Eqs. (17) or Eqs. (21) can be solved numerically. An efficient and accurate procedure is a combined

Runge-Kutta solution and shooting method. The Runge-Kutta technique is applied to the system of

second-order ordinary differential equations, and the initial conditions are set at y = 0,

f(0) = 0, f ′(0) = 1, h(0) = 0, h′(0) = χ1 + i χ2. (23)

A comparison with Eqs. (17) and (21) reveals that there are two extra conditions: f ′(0) = 1 and h′(0) =

χ1 + i χ2. The former fixes the undetermined overall scale of the perturbations, while the latter just

introduces two unknown real parameters, χ1 and χ2. These unknowns, together with ω and λ, are to be

determined for prescribed values of (α, n, Pe, γ). The shooting method is employed to evaluate the four

real unknowns (χ1, χ2, ω, λ) by satisfying the target conditions,

f ′(1) = 0, h(1) = 0. (24)

Equations (24) are, in fact, four real equations as f and h are complex functions.

The numerical solution is implemented through the software environment Mathematica. In particular,

the Runge-Kutta solution is implemented with the built-in function NDSolve, while the shooting method is

accomplished by using the built-in function FindRoot. The default option of NDSolve, yielding an adaptive

step-size refinement within the interval 0 < y < 1, is applied. The accuracy of this numerical procedure

was tested, with reference to a different eigenvalue problem, in Barletta (2012).

3 Results and discussion

The main purpose of the linear stability analysis is the determination of the values of λ that identify

the threshold for the onset of thermally driven convection. These values are the so-called critical values,

denoted here by the subscript cr, and they can be identified as the absolute minima of the neutral stability

12



αcr Racr ωcr − αcrPe∗cr

γ Pe = 0 Pe = 0.5 Pe = 5 Pe = 0 Pe = 0.5 Pe = 5 Pe = 0 Pe = 0.5 Pe = 5

10−9 2.32621 2.32621 2.32621 27.0976 27.0976 27.0976 0.00000 0.00000 0.00000

10−6 2.32621 2.32621 2.32621 27.0973 27.0973 27.0973 0.00000 0.00000 0.00002

10−4 2.32572 2.32572 2.32572 27.0604 27.0604 27.0604 0.00000 0.00022 0.00217

10−3 2.32143 2.32143 2.32142 26.7350 26.7350 26.7351 0.00000 0.00212 0.02117

0.01 2.28835 2.28834 2.28757 24.1803 24.1804 24.1857 0.00000 0.01746 0.17472

0.05 2.22275 2.22263 2.21089 18.7226 18.7231 18.7741 0.00000 0.05095 0.51495

0.1 2.19116 2.19082 2.15728 15.6866 15.6877 15.7996 0.00000 0.06667 0.69093

0.5 2.15465 2.15108 1.87073 9.18302 9.18856 9.69731 0.00000 0.04553 1.03011

1 2.16703 2.15759 1.59990 7.01557 7.02589 7.87347 0.00000 −0.02867 1.64535

5 2.28114 2.19879 0.854726 3.54832 3.58811 5.33040 0.00000 −0.55562 10.9945

10 2.36506 2.17148 0.604118 2.59944 2.66738 4.87322 0.00000 −1.02541 21.4352

Table 2: Values of αcr, Racr and ωcr − αcrPe∗cr as functions of γ for the case n = 1 and different values of

Pe

curves, λ(α). A few examples of these curves are displayed in Fig. 1. This figure is relative to Pe = 10.

Each frame refers to a different value of n, and each curve is drawn for a different value of γ. One may note

that, as the value of n increases, the usual upward-concave shape of the neutral stability curves, typical

of Rayleigh-Bénard instability, changes to a doubly-concave shape characterised by two minima. This

behaviour occurs for sufficiently high values of both γ, and n. As the neutral stability curves, generally

speaking, move down in the (α, λ) plane as γ increases, one may identify an overall destabilising effect

of the temperature-dependent apparent viscosity. In the special case of a Newtonian fluid saturating a

porous layer, this destabilising effect is a well-known feature (Kassoy and Zebib, 1975; Nield, 1996). In

particular, Kassoy and Zebib (1975) pointed out that the lower threshold for thermal instability can be

easily explained. In fact, the warmer fluid close to the lower boundary is less viscous than in a constant

viscosity model, so that it is more prone to initiate the convective flow.

Figures 2 and 3 display the behaviour of λcr and Racr as functions of the parameters γ and Pe,

respectively. Each frame in these figures is drawn for a given value of n. Figure 2 displays plots of λcr(γ)

for different values of Pe while Fig. 3 displays plots of λcr(Pe) for different values of γ. We point out that,

as proved in Section 2.2, the values of λcr do not depend on Pe in the limiting case γ → 0. The solid lines

drawn in Fig. 2 indicate the asymptotic behaviour attained when γ → 0, obtained by solving Eq. (21).

Figure 3 is specially useful as it displays the markedly different trend of Racr when Pe becomes smaller

and smaller, and either n < 1, or n = 1, or n > 1. This trend suggests that Racr increases unboundedly

when n < 1, approaches a finite non-vanishing limit when n = 1, and tends to 0 when n > 1. Moreover,

Fig. 3 shows that the effect of an increasing Pe is extremely weak for Newtonian fluids, but it is very

strong for either pseudoplastic or dilatant fluids. Tables 1 and 2 report values of the critical parameters for

the onset of instability in the special cases γ → 0 and n = 1, respectively. The values reported in Table 1
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are independent of Pe as it is made evident from Eqs. (21) and from Figs. 2-5. Table 1 evidences that

λcr undergoes a gradual increase on changing the rheological behaviour of the fluid from pseudoplastic to

dilatant, i.e. on increasing n. Just the same qualitative behaviour was found for transverse rolls in the

case where both boundaries are impermeable (Barletta and Nield, 2011). Table 2 reports (αcr, Racr) in

the Newtonian case, with different values of Pe. As already mentioned, these data show the destabilising

effect of an increasingle variable viscosity. Table 2 reveals that, as γ increases, the data become more and

more dependent on the Péclet number. In fact, the pair (αcr, Racr) does not depend on Pe when γ → 0

and n = 1, as it can be inferred from Eqs. (21). Table 2 also reports values of ωcr − αcrPe∗cr, where Pe∗

is defined by Eq. (22). These data show that, at onset of instability, the phase velocity ωcr/αcr is not

equal to the basic flow average velocity, Pe∗cr. As already pointed out in Section 2.2, this means that the

principle of exchange of stabilities cannot be invoked when γ ̸= 0. An exception illustrated by Table 2 is

the case Pe = 0 where ωcr = 0.

Figures 4 and 5 display the behaviour of αcr as a function of parameters n, γ, and Pe. Both these

figures are made of six frames, each frame being drawn for a given value of n. Figure 4 displays plots of

αcr(γ) for different values of Pe while Fig. 5 displays plots of αcr(Pe) for different values of γ. The straight

solid lines displayed in Fig. 4 yield the values αcr relative to the case γ = 0.

An interesting feature displayed in Figs. 2-5 is the occurrence of discontinuities in the slope of λcr

associated with jump discontinuities in the trend of αcr. This behaviour is nothing but the consequence of

the double-minima shape of the neutral stability curves. When the second minimum of λ versus α becomes

the lowest, we observe both the slope discontinuity of λcr and the jump discontinuity of αcr.

4 Experimental issues

The experimental investigation of the onset of Rayleigh-Bénard cells in non-Newtonian porous flow with

an open boundary poses several challenges. First, the adoption of particle tracking or particle image

velocimetry (PIV) algorithms to detect the cell growth requires a tracer characterised by a mass density

equal to the fluid to prevent sedimentation or flotation, which in turn remove the particles from the fluid

and induce perturbations represented by vertical velocities.

Second, the need to establish an average velocity field induces several additional problems. The early

stage of cell formation is characterised by an incipient velocity much smaller than the imposed mean

velocity, hence it becomes difficult to isolate the velocity induced by thermal convection. The estimation

of the average velocity profile, to be subtracted to the flow field in order to isolate the perturbed velocity,

should be based, e.g., on a moving time average or a Principal Orthogonal Decomposition (POD), or a

filtering of the measured velocity field. All these techniques show an uncertainty much larger than the

perturbed velocity itself. Moreover, the presence of an open boundary is a further complication, making

the methodology used by Darbouli et al. (2013) to detect the incipient instability inapplicable. In fact,

this methodology is based on measuring the thermal flux between the hot and the cold frames against the

temperature gradient, as incipient cells enhance the efficiency of thermal transfer. With an open boundary,

however, even a modest horizontal velocity field induces variations in the vertical thermal flux much larger
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than those generated by the incipient instability.

Finally, experiments with a free surface at the top require the Hele-Shaw cell to be inclined. In fact,

the imposed horizontal flow requires a spatial gradient of the free surface, which in turn must be parallel

to the bottom and to the top frames. The optimal inclination angle can be obtained by trial-and-error in

steady state. However, this regime is never fully reached, and once the cells develop, the overall dissipation

increases and the requested spatial gradient increases, making it difficult to adjust the inclination.

These preliminary considerations guided the realization of the experimental setup described below.

4.1 Experimental setup

In order to verify the mechanism of cell formation, a Hele-Shaw cell of length L = 80 cm and height

H = 4 cm was built, similar to Hartline and Lister (1977). The optical access is through two polycarbonate

windows 0.8 cm thick, with a gap maintained by aluminium shims of 0.1, 0.2, and 0.3 cm. The assembly is

held together by an aluminium frame machined by using a CNC milling cutter. The temperature control

is obtained by circulating water at the hot lower side, and coolant at the cold upper side, and modulating

the pumps discharge with a Proportional Integral Derivative (PID) control system. The sensors are two

PT100 probes, 4 wires AA 1/3DIN with a nominal accuracy of 0.10K at 0K, inserted in the upper and

in the lower side of the frame. A cross-section and a front view of the Hele-Shaw cell is shown in Figure

6. Note that the upper boundary is not open as in the theoretical model, but impermeable. The sensors

were calibrated by comparison with a mercury thermometer of 0.02K accuracy, the hot sensor in the range

288− 318K and the cold sensor in the range 273− 303K. The sensors showed an excellent linearity, with

an estimated maximum uncertainty of 0.08K in the calibration range. Hence the temperature difference

is measured with an expected uncertainty of 0.12K and can be controlled with the PID within 0.20K. In

order to guarantee a thermal flux in the vertical direction only (from the hot toward the cold frame), the

cell is thermally insulated in all its components with foam rubber and thermal insulating tape, leaving

a window in correspondence of the polycarbonate plate accessible for velocity measurements. Two free

surface tanks, or wells, are connected to the cell, allowing fluid injection and extraction in order to generate

a constant flux. A syringe pump is used to inject the requested discharge.

The measurement of velocity is performed with a Particle Image Velocimetry (PIV) system from TSI with

a 2048× 2048 pixel video camera (TSI Power View Model 630149) fitted with a NIKKOR AF D 50 mm/f

lens with an adapter ring (Nikon PK-12). The light source is a water cooled Solo Nd:YAG III dual laser

head with a maximum repetition rate of 15 Hz and an output energy of 50 mJ. The laser is mounted on the

same side of the video camera, with two cylindrical lenses fitted in order to transform the beam into a spot

light instead of the classical sheet of light. The spot light enlightens the accessible window. Polarised filters

are added to the video camera to eliminate the reflections. Since the expected velocities are very small,

the time interval between the two frames is quite long, but a set up of the synchronyzer with high values

of the interval time proved to be unstable. For this reason, we preferred to elaborate frames belonging

to different shots, acquired with interval time of the order of seconds. The calibration of the PIV in the

experimental configuration gave a resolution of 0.05 mm per pixel. Velocity computation was carried out
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Figure 6: Hele-Shaw cell. (a) Cross section, and (b) front view.
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using a Fast Fourier based correlation analysis implemented in a Matlab code (Matpiv 1.6.1 Sveen (2004)).

The power law fluid was obtained with two different recipes, by (i) adding Xanthan Gum (XG) with varying

concentration (1000 ppm or less) to softened tap water, with added NaCl as a stabilizer, and (ii) adding

Carboxymethyl cellulose (CMC) to deionized water and biocide to prevent degradation. Successful mixing

was achieved using a low-speed stirrer. Before introducing the fluid in the cell, tracers for PIV were added

(Degussa Vestosint® or pine pollen) by using a syringe with several cycles of aspiration and injection in

order to improve the homogeneity of the particles distribution.

The rheology of the fluid was measured with a parallel plate rheometer (Dynamic Shear Rheometer Anton

Paar Physica MCR 101), and the mass density with a hydrometer (STV3500/23 Salmoiraghi), with an

accuracy of 1%.

4.2 Experimental results

Some preliminary test were conducted to check the adequacy of the technique and the overall efficiency of

the device. Figure 7 shows four snapshots of the velocity field with increasing temperature gradient from

top to bottom. It is seen that recirculation cells with a measured velocity equal to a fraction of one mm/s

progressively appear and develop as the temperature gradient increases.

Qualitatively, this is in agreement with the 2-D theoretical model, which predicts that thermal instability

for porous flow of a power-law fluid is associated to a non zero Péclet number, i.e., with a non zero

horizontal velocity of the fluid. However, preliminary tests conducted in the cell show instability also for

a fluid initially at rest. There are two possible reasons for this unexpected behaviour. First, the fluid

used in the experiment could have deviated from power-law behaviour at small shear rates. Secondly, the

convection cells showed a strong hysteresis effect: the temperature gradient required to trigger convection

was decidedly larger than that corresponding to the disappearance of the cells. These nonlinear effects play

an important role and demonstrate there is an approximation associated with the linear stability analysis.

Another relevant difficulty was the correct selection of the tracers. In order to have an adequate accuracy

in measurements, it is necessary that the tracers follow closely the fluid motion, with a minimal lag and a

nearly uniform distribution throughout the flow field; the algorithm for estimating the velocity fails with

a limited number of particles. In flow fields with an average non-zero velocity, drag and turbulence mix

the tracer particles, counteracting the sedimentation (or floating) due to the action of gravity; in fluids

nearly at rest, like in the Hele-Shaw cell of our experiments (at least before the growth of the instabilities),

gravity effects are dominant. In order to avoid segregation of the tracers, their mass density should be

chosen to be close to the fluid’s. However, a major limit is the variability of the mass density of the fluid

along the vertical, due to the temperature gradient. The pine pollen particles used in our experiments were

partially able to adapt their apparent mass density to the ambient fluid, having a sponge-like structure

which favours absorption. However, the particles had an attitude to aggregate, generating lumps which

showed a noticeable lag with respect to the fluid motion. In perspective, better results could be obtained

using microsponges, presently used in pharmaceutical technology for drug deliver system (Kaity et al.,

2010).
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Figure 7: Snapshots of the velocity field measured in the Hele-Shaw cell with a gap thickness of 3 mm. The

fluid is shear thinning (water plus CMC 1.5% wgt), with n = 0.9 and µ∗
0 = 0.25 Pa sn. (a) ∆T = 5.8K,

(b) ∆T = 6.3K, (c) ∆T = 6.8K, (d) ∆T = 8.1K. The rulers are in millimetres.
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Figure 8: Experimental basic flow with average horizontal velocity 0.007 cm s−1. (a) Horizontal velocity

corresponding to three different values of ∆T , and (b) vertical velocity. The fluid is a mixture of water,

CMC (1.5% wgt), tracers, with n = 0.88, µ∗
0 = 0.72Pa sn.

Finally, it was difficult to find natural or artificial fluids showing a stable shear-thickening behaviour at

the time scales of the present experiments. Most, if not all, shear-thickening fluids are suspensions (see,

e.g., cornstarch in water adopted by Longo et al., 2015a, Longo et al., 2015b) and are subject to segregation

of the dispersed phase. The time scale of segregation is much smaller than the time scale of the instability

process, hence the mixture loosens or at least significantly changes its rheological characteristics during the

experiment. This phenomenon is more evident if there are density variations in the mixture induced, e.g.,

by a spatial temperature gradient. Hence, these mixtures can be used only for relatively fast experiments.

The basic velocity profile has been experimentally verified. Equations (8) and (20) show that, for every

value of n, the profile is a linear function of y. In terms of dimensional variables, it is expressed as

ub(y) = ub(H)
[
1 + ξ∆T

(
1− y

H

)]
. (25)

Figure 8 shows the average horizontal and vertical velocity profiles for the basic flow either with absence of

heat flux (∆T = 0K), within the experimental uncertainty, or with two non-zero temperature differences,

∆T = 16.2K and 27.4K. A reasonably linear profile of the horizontal velocity is observed in all three

cases, presumably distorted by a small thermal flux at the walls of the cell which causes a deviation of the

temperature profile from linearity. The vertical velocity profiles are fluctuating around zero as expected,

with larger fluctuations near the bottom where sedimentation is more evident. We estimated the coefficient

ξ = 0.095K−1.

During the setup and calibration of the experimental apparatus, it become clear that the Hele-Shaw cell

can be used, with good accuracy, for the direct measurement of the rheological parameters of the power-law

fluid. The details of the method are illustrated in Appendix A.
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5 Conclusions and future work

We presented a theoretical formulation for the onset of thermally driven convection in a 2-D porous

medium heated from below. The fluid saturating the medium is described by a power-law rheological

model. The apparent viscosity is considered as temperature dependent according to a model where the

consistency index is variable and the power-law index is constant. The upper boundary is assumed to

be open, while the lower boundary is impermeable. The basic horizontal flow across the layer has been

determined analytically. A two-dimensional linear stability analysis has been carried out to assess the

critical conditions for the onset of convective cells within the layer. The numerical solution of the stability

eigenvalue problem has allowed the determination of neutral stability curves for different assignments of

the Péclet number, Pe, the variable viscosity parameter, γ, and the power-law index, n. These curves have

been plotted in the (α, λ) plane, where α is the perturbation wave number and λ is the ratio between the

Rayleigh number, Ra, and Pen−1. The critical condition, (αcr, λcr), is one identifying the minimum of λ

(or Ra) along each neutral stability curve. The most important results obtained by the linear stability

analysis are the following:

• The Péclet number influences significantly the critical values (αcr, λcr) only when γ is large enough.

The limiting case of a temperature-independent viscosity (γ → 0) is one where (αcr, λcr) does not

depend on Pe. The same conclusion was drawn by Barletta and Nield (2011) for the case of a porous

layer with impermeable boundaries.

• There is a generally destabilising effect of the variable viscosity, namely the critical value of λ decreases

with γ, for fixed n and Pe. This behaviour has been previously documented in the literature for

the case n = 1 where both the lower and the upper boundaries are impermeable (Kassoy and Zebib,

1975; Nield, 1996).

• When Pe and/or γ are large enough, the usual upward concave shape of the neutral stability curve

turns into a double minimum shape. This results into a discontinuity of αcr when plotted versus γ.

As the experimental study of Rayleigh-Bénard convection of non-Newtonian fluids in two-dimensional

porous media with an open boundary is a relatively new endeavour, an Hele-Shaw cell was built from

scratch to test the theoretical formulation. Some preliminary tests were conducted, showing the appearance

and development of recirculation cells as the temperature gradient across the cell increases. The horizontal

velocity profile corresponding to the basic flow was reproduced accurately. These experimental results, in

qualitative agreement with the theory, highlighted instability for zero transverse flow, and strong hysteretic

effects: the cells, once formed, continued to exist even if the temperature gradient was decreased well below

the value it had on their first detection. These effects, associated to nonlinearity, need to be quantified to

determine the approximation associated with the linear stability analysis.

Furthermore, the experimental setup allowed to identify several issues of relevance in the planning

of a comprehensive set of experiments geared at verifying the theory. Firstly, the order of magnitude

of the velocity field to be measured (millimeters per second) requires accurate measurements. Secondly,

the rheometry of the fluid proves to be essential in interpreting the flow behaviour, as deviations from

20



power-law behaviour at small shear rates may contribute to instabilities. The need to measure the fluid

parameters in the appropriate range of shear rates is confirmed. To this end, it was demonstrated that the

Hele-Shaw cell can be used for the direct measurement of the rheological parameters of the power-law fluid.

Thirdly, an appropriate selection of tracers is crucial for accurate measurements: good results are obtained

when the tracer density is close to the fluid’s. Pine pollen particles, used in the preliminary tests, could be

substituted with microsponges in future experiments. Fourthly, experimental verification of the behaviour

of shear-thickening fluids proves difficult, as most suspensions tend to segregate fairly quickly, changing

significantly their characteristics during the experiment. Hence, tests with these mixtures should be limited

to relatively fast experiments. While the boundary condition with a a rigid lid can be easily reproduced,

the free surface boundary condition requires additional efforts: the need of a non-zero flow in the cell forces

a space pressure gradient which can be achieved only by tilting the cell. In order to avoid contact with

the aluminium shim, the angle of tilting should be equal to the free surface inclination. This may prove

difficult, since the free surface inclination is readily variable following different dissipation regimes of the

current, which in turn depend on the average fluid temperature. In addition, the air cushion between the

shim and the free surface has a low thermal conductivity, hence there is a significant temperature difference

between the horizontal upper frame and the fluid. This makes the evaluation of the temperature gradient

uncertain.

The study carried out in this paper opens significant perspectives for future work. The following aspects

need to be further developed:

(i) The linear stability analysis can be expanded in order to include boundary conditions closer to those

actually implemented in the experimental setup. Also the model of temperature-dependent viscosity

can be adapted to the actual rheological behaviour of the working fluid employed in the experiment.

(ii) A comprehensive set of experiments is to be planned and implemented. The aim is obtaining the

values of λ that identify the threshold for the onset of thermally driven convection, and the associated

uncertainty. Also an adaptation of shadowgraphic methods can be tested to indirectly detect the

density fluctuations associated with the incipient development of the cells.

(iii) A crucial aspect to be further developed is the modelling of the non-Newtonian behaviour when

Pe → 0. This point was discussed in Nield (2011a). This author suggested that the power-law

behaviour should turn into an effectively Newtonian behaviour when Pe → 0. The importance of

extensive experiments in this regime can be very important to establish whether the onset convection

depends or not on n when Pe is vanishingly small.
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Figure A.1: Time series of the average velocity measured during unsteady-state flow in the Hele-Shaw cell.

The fluid is a mixture of water, CMC (1.5% wgt), tracers, T0 = 296.3K, the same used for the experiments

shown in Figure 7. The bold line indicates the theoretical velocity according to eq. (A.1), with the fitted

parameters n = 0.88, µ∗
0 = 0.72Pa sn, Q = 0.0169 cm3 s−1.

Appendix A Measuring the fluid rheological parameters by the Hele-

Shaw cell

A major issue in analyzing the rheological behaviour of non-Newtonian fluids is the correct estimation

of rheometric parameters. As the two-parameter power-law model is an approximation of more complex

models (e.g., the four-parameter Cross or Carreau-Yasuda model), the estimation of its rheometric pa-

rameters is strongly related to the expected interval of shear rate values. Hence the first step is usually

an estimation of the expected shear rate in the experiments, which is often based on a model of the flow

field (see, e.g., Longo et al. (2013)) and subject to uncertainty. In addition, the geometry of the rheometer

itself affects the results: for a power-law fluid, a parallel plate rheometer gives different values of the fluid

behaviour and consistency indexes with respect to the values obtained with a cup and bob rheometer. In

order to partially overcome all these approximations, we tested the feasibility of a direct measurement of

the power-law parameters in the Hele-Shaw cell. To this aim, the syringe pump was used to inject the

fluid at a constant influx rate in one of the well of the Hele-Shaw cell, which was already filled with the

same fluid. The PIV system monitored the average horizontal velocity of the fluid in the cell. The fluid

started to flow in the other well, which serves as an accumulator. The process is described by the following

equation:

L

g
u1−nd

2u

dt2
+

Lµ∗
0

ρg

(
2

b

)n+1(2n+ 1

n

)n

n
du

dt
+

(
bh

A1
+

bh

A2

)
u2−n =

Q(t)

A1
u1−n, (A.1)

where u is the average horizontal velocity of the fluid in the cell, L is the cell length, g is gravity, µ∗
0 and n

are the consistency and fluid behaviour indexes of the fluid, b and h are the cell gap and height, respectively,

A1 and A2 are the cross-section areas of the upstream and downstream wells, respectively, and Q is the

influx rate. We have assumed no outflow. After imposing a constant influx rate Q, PIV measurements

generated the time series of average velocity u. The unknowns are µ∗
0 and n, which are estimated by an

optimization procedure of the parametric differential equation (A.1).
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Figure A.1 shows the experimental points and the theoretical velocity (bold line) estimated with the

optimization procedure. The fluid is identical to that used for the experiments shown in Figure 7. The

differences between the rheological parameters measured with the parallel plate rheometers (n = 0.9 and

µ∗
0 = 0.25 Pa sn) and with the new methodology (n = 0.88, µ∗

0 = 0.72Pa sn), can be attributed to the

different flow field generated in the rheometer and in the Hele-Shaw cell and to the different average shear

rate. Note that the influx rate Q can be either known or estimated by the velocity measurements, but in

the former case the overall uncertainty increases. For constant influx rate, the asymptotic average velocity

in the cell is equal to

u∞ =
Q

bh(1 +A1/A2)
. (A.2)
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