
 Procedia Environmental Sciences   25  ( 2015 )  58 – 65 

1878-0296 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of the IAHR Groundwater Symposium 2014
doi: 10.1016/j.proenv.2015.04.009 

Available online at www.sciencedirect.com

ScienceDirect

7th Groundwater Symposium of the  
International Association for Hydro-Environment Engineering and Research (IAHR)   

Porous gravity currents of non-Newtonian fluids within 
confining boundaries 

V. Cirielloa, S. Longob, L. Chiapponib and V. Di Federicoa* 
aDICAM-Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy 

bDICATeA-Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy 

Abstract 

Motion of non-Newtonian gravity currents in horizontal impermeable channels filled with a porous material is 
investigated theoretically and experimentally. A constant or time-variable volume of fluid, characterized 
rheologically by the Ostwald-de Waele constitutive equation, is released from a point source into a channel of 
uniform cross-section, whose boundary height is described by a monomial relationship. The mathematical problem is 
formulated and solved at the Darcy scale coupling the local mass balance equation with a modified Darcy’s law, 
taking into account the nonlinearity of the rheological equation. The resulting non-linear ODE is integrated 
numerically in the general case; for the release of a constant volume, a closed-form analytical solution is derived. 
Earlier results for Newtonian currents inside confining boundaries and power-law currents in two-dimensional 
geometry are generalized. The experiments were conducted in a transparent channel of semi-circular cross-section 
filled with uniform size glass ballotini. The position of the current front, recorded by a photo camera, was generally 
in a good agreement with the theory. The propagation of the current is described by L tF2 where F2  is a scalar 
depending on (i) the time exponent of the volume of fluid in the current, α, (ii) the geometry of the channel, 
parameterized by β and (iii) the exponent n of the rheological equation. It is found that for a critical value αc = 
n/(n + 1), F2 is independent on the shape of the channel; for α < αc, F2 is a decreasing function of β; the reverse is 
true for α > αc. Upon comparing results with free-surface viscous flow in open channels, it is found that: (i) the same 
expression for αc holds; (ii) the exponent F2 increases or decreases monotonically with β, while for the triangular 
section (β = 1) in open channels, a maximum or minimum value of F2 is attained for α < αc and α > αc, respectively. 
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1. Introduction 

Porous gravity currents, determined by a fluid intruding into a porous formation initially saturated with 
a fluid of different density, are widely studied since they occur in many environmental processes such as 
enhanced oil and heat recovery, groundwater remediation, carbon dioxide sequestration, and saltwater 
intrusion (see [1] and references therein). The literature is rich in analytical, numerical and experimental 
approaches to gravity-driven flows in porous media generated by the release of a time-variable volume of 
fluid. The flow is often described under the thin current assumption, neglecting the dynamics of the 
ambient fluid, and considering simple geometries and propagation over an impermeable bottom [2-4]. 
The mathematical problem is solved by means of self-similar solutions, describing the intermediate 
asymptotic behaviour of the current when the solution is no longer dependent on the specific initial and/or 
boundary conditions. Comparison of theory with experiments usually provides good results for the front 
end speed and current profile, except at the beginning of the process and near the injection zone. A step 
forward consists in including the effect of confining boundaries to represent flow in porous channels [5], 
whose shape is shown to affect significantly the propagation rate.  

Another important progress in the study of porous gravity currents consists in considering non-
Newtonian behaviour, to represent the rheology of, e.g., polymeric suspensions in enhanced oil recovery; 
pollutants in environmental modelling; muds in well drilling; crude oil in reservoir engineering; fluid 
carriers for nanoparticles in soil remediation. Solutions for non-Newtonian gravity currents of power-law 
fluids are derived in planar and radial geometry by [6-7], and experimentally confirmed by [8].  

Akin to Newtonian applications, the channel geometry is expected to impact the propagation of gravity 
currents of non-Newtonian fluids in porous media. To explore the combined effect of rheology and 
channel geometry, we consider an Ostwald-de Waele constitutive equation for the fluid, and a channel of 
uniform cross-section, whose boundary height is described by a monomial relationship. The mathematical 
problem is formulated in Section 2; a self-similar solution is derived in Section 3 and discussed in Section 
4. To verify the theoretical results, a set of experiments is designed and carried out in a circular horizontal 
channel under constant volume flux conditions; comparison with theory is described in Section 5. Section 
6 provides some concluding remarks. 

2. Problem formulation 

We study the gravity-driven flow of a viscous non-Newtonian fluid of power-law behaviour, described 
in simple shear flow by nγμτ ~= , being τ and γ

 

the shear stress and shear rate, n the behaviour index and 
μ~  the consistency index; 1<n  and 1>n  describe shear-thinning and shear-thickening fluids, 
respectively, while for 1=n  Newtonian rheology is recovered and μ~  reduces to dynamic viscosity μ. 
The power-law model usually provides an accurate approximation in an intermediate range of shear rates 
(e.g. 0.1-5 s-1, as demonstrated in [9]). The intruding fluid, of density ρ + Δρ, is released at the origin of a 
horizontal rectilinear channel of fixed cross-section, filled with a homogeneous porous medium saturated 
with a second fluid of lesser density ρ. The height of the gravity current is considered to be a small 
fraction of its length and of the saturated layer height, the hydrostatic assumption is assumed to hold, and 
mixing and surface tension effects are neglected. The channel geometry is shown in Figure 1a. The 
channel wall (Figure 1b) is given by the generic power-law relationship ( ) ( )βayahyb c= , where β is a 
shape parameter, a is a length scale, and hc is a dimensionless constant. In such a channel, the height 
h(x, t) and half width W(x, t) of the current are related as ( )βaWhah c= , implying 
( ) ( ) ( ) βββ 11, −= ahhtxW c ; β = 1 corresponds to a triangle, while β → ∞ represents a rectangle of half 

width a, recovering two-dimensional flow along a flat surface [2] as a special case. 
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Fig. 1. (a) Coordinate system; (b) Channel cross-section, y-z plane  

Under these hypotheses, the local mass balance equation is given by [5] 
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where φ is the medium porosity and ux the Darcy velocity in the x direction, given by [10] 
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in which the hydrostatic assumption was employed. Substituting (2a) in (1a) yields 
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where *v  is the velocity scale, and the factor F1 encapsulates the cross-section shape; for flow in very 
wide rectangular channels, F1 → 1 [2]. The current volume at any time t is given by αQt , with Q and α  
being constant; 0=α  implies the instantaneous release of a fixed volume and 1=α  a constant volume 
flux. The global continuity equation and the condition at the edge xN(t) of the current read, respectively 
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Upon introducing the dimensionless variables ****   ;  ;  ; xhhxxxxxxttt NN =′=′=′=′ , where the 

time and space scales are defined via the velocity scale respectively as ( ) ***313**  ;))/(( tvxvQt == −αφ  , 
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equations (3a), (4a) and (4b) become respectively 
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In the sequel, primes are removed for the sake of brevity. For 3=α , the time scale is no longer valid 

and ( ) 31φQ  emerges as an additional velocity scale; a new set of dimensionless variables needs to be 
defined along the lines of [11]; refer to [7] for this case. 

3. Self-similar solution 

To find a similarity solution, we note that (5a)-(5b) provide for the length and height of the current L 
and H the scalings ( ) ( )[ ] ( )[ ]11111 111~ +++++ nF

c
nFnF ATL α , ( )[ ] ( )[ ] ( ) ( )[ ]111111 11~ +++++−+ nFn

c
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introduction of the similarity variable and scaling for the current height as 
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where Nη  is the value of the similarity variable at the current edge, Nηηζ =  the reduced similarity 
variable, )(ζΨ  the shape function, and the factors Fi (i = 2−5) are given by  
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Substituting (6a,b) in (5a,b,d) yields respectively  
 

( ) .01 ; ;0
4

111

1

0

32
1

1

1

=Ψ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ−

Ψ
Ψ−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ψ
−Ψ

−

− ∫
F

F
N

F
n

F dF
d
dFF

d
d

d
d

ζη
ζζζ

 (8a,b,c)  

 
Once Nη  is determined, the extension of the gravity current is given by ( ) ( ) 24  FF

cNN tAtx η= . For a 
current of constant volume ( 0=α ), equations (8a,b,c) can be solved analytically yielding  
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where ( )⋅Γ is the gamma function. For the case 0≠α , Equations (8a,b,c) are solved numerically. 

Governing equations and results include as special cases: i) the Newtonian fluid (n = 1) [5]; ii) the 
infinitely wide rectangular section (F1 = 1, ∞→β ) [6]. For n = 1, F1 = 1, the results of [2] are recovered. 

4. Discussion of results 

The time exponent of the front end position, F2, is a function of the time exponent of the fluid volume, 
α, of the geometry of the channel, parameterized by β, and of the fluid behaviour index, n. Figure 2 
shows this dependency for a shear-thinning fluid with n = 0.5. It is seen that for a given fluid and channel 
shape, F2 always increases with α. For a given value of α, the effect of the shape parameter β differs if α 
is above or below a critical value αc = n/(n + 1). In the former case, F2 increases with β ; in the latter case, 
the reverse is true. If α = αc, the shape of the cross-section does not affect the value of F2 and it results 
F2 = n/(n + 1). The height of the current is ∼ t F3 and it increases or decreases with time depending 
whether α > αc or α < αc. 
 

       

Fig. 2. Values of F2 as a function of β for different α, for a shear-thinning fluid with n = 0.5. The solid lines (P) refer to channels 
filled with a porous medium, the dashed lines (NP) to open channels. The line corresponding to α = 5/2 indicates that the current is 
accelerating (F2 > 1) in channels with β > 2. Below the β axis, the channel shapes corresponding to different β  are sketched.  

The qualitative behaviour of the exponent F2 against β is the same if different values of the rheological 
index n are considered (not shown), except that the critical value αc increases with n, tending to 0 for very 
shear-thinning fluids (0 < n << 1) and to 1 for very shear-thickening fluids (n >> 1); for Newtonian fluids 
(n = 1) the results of [5] are recovered, with αc = 1/2. Figure 2 also depicts for comparison (dashed lines) 
the time exponent F2 obtained for laminar gravity currents of non-Newtonian power-law fluid flowing in 
open channels [12]. It is seen that the critical value of α is common to both flows; in porous channels, the 
exponent F2 increases or decreases monotonically with β, while in open channels it attains a maximum or 
minimum value for the triangular section (β = 1) when α <αc and α >αc respectively. The different 
behaviour is due to the main role played by the shape of the cross-section for free surface flows under the 
validity of Stokes equation, with an abrupt change in behaviour (at least in the analytical model) for β = 1 
(triangular section), which is absent in porous channels. 

To evaluate whether the current accelerates or decelerates, the behaviour of F2 −1 is examined. It is 
seen that the front end accelerates or decelerates depending whether α is above or below a limit value αl = 
2 + 1/β, which is not influenced by the rheology of the fluid. The average pressure gradient driving the 
motion, being proportional to the ratio between the average current height and length, varies with time 
as t F3

−
F2, and hence increases or decreases with time for α >αl or α <αl. For triangular or concave cross-
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sections with β ≥1, the limit value αl varies between 2 for the rectangular cross-section (β → ∞) and 3 for 
the triangular one (β =1). Hence, in the range 2 ≤ α ≤ 3 the current can be accelerated or decelerated 
depending on the channel shape, as earlier noted by [5] and shown in Figure 2 for α = 5/2; the current is 
always accelerated for α > 3. For convex cross-sections with 0 < β < 1, the current is always decelerated 
if α < 3, whereas an accelerated current can be obtained if α > αl > 3. In particular for α  = αc, the current 
is always decelerated.  

The overall behaviour of the current can be interpreted by considering that for α  > αc the current 
height increases with time (h ∼ t F3>0): however if the volume of fluid grows at a sufficient rate (i.e., V ∼ 
tα  > 

α
l > 

α
c) the front end of the current can be accelerated (xN ∼ t F2>1), otherwise it is decelerated. For 

α  < αc, the height of the current always decreases in time, and the volume of injected fluid will never be 
sufficient to accelerate the front end. In turn, acceleration or deceleration of the current is related to the 
average gradient pressure through the Darcy-like law (2a) and its interaction with the mass balance 
equation (1a)-(2a), with the rheology of the fluid involved only in the limit value of α. 

 

 
Fig. 3. Sketch of the experimental setup. 

5. Experimental investigation 

Theoretical results are validated against experiments conducted in the Hydraulics Laboratory of the 
University of Parma. The advancement of currents of shear-thinning fluids within a semi-circular channel, 
filled with a porous medium composed of glass ballotini, is measured and compared with the similarity 
solution for the case β = 2, approximating the semi-circular cross-section when the current width is small 
if compared to the channel radius. The ambient fluid is air. Four different diameters of the beads d = 1 – 4 
mm, and different fluids with behaviour index and density in the ranges n = 0.42 – 0.75 and 1080 –
1174 kg m-3 are tested, with constant flow discharge varying from 0.233 to 1.04 ml s-1.  

The experimental apparatus (Figure 3) consist of a quarter-circle cross-section channel made of 
Polymethyl methacrilate, a transparent thermoplastic, with radius 9.5 cm and length 200 cm. The channel 
is supported with four adjustable feet to control its longitudinal and transversal inclination. The glass 
beads are gently poured in the channel with gravity acting as the sole compaction force. The non-
Newtonian fluid is prepared mixing Glycerol, water and Xanthan gum at varying concentrations in order 
to obtain different rheological parameters; ink is added to enable visualization. The rheometric parameters 
of the fluid are measured in the low shear-rate range (< 5 s-1) with a parallel plate rheometer; the mass 
density is measured by a pycnometer. The fluid is injected through a cylindrical zone positioned vertically 
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at one end of the channel, with the supply system represented by a Mariotte bottle and a control valve. 
The injected flow rate is measured at the beginning and end of the test to check its constancy, by 
weighing the volume of fluid exiting the bottle and collected during a given time interval. The position of 
the current is recorded via a high-resolution photo camera, with a time step of 10÷60 s between two 
consecutive shots. Another camera is used to record the profile of the current. A software allows image 
analysis to detect the current profile and transform pixel positions into metric coordinates. A correction is 
also applied to account for the effect of the capillary fringe. 

 

                            Table 1. Parameter values for experiments in a horizontal channel of circular cross-section. 

Exp. # d (mm) ρ (kg m-3) n (.) μ~  (Pa sn) Q (ml s-1) Δt (s) duration (s) 
1 2 1160 0.42 0.36 0.734 10 430 
2 2 1160 0.42 0.36 1.04 10 500 
3 2 1160 0.42 0.67 0.680 30 2700 
4 3 1160 0.42 0.67 0.460 60 3900 
5 3 1135 0.66 0.33 0.430 60 5280 
6 3 1135 0.66 0.33 0.275 60 7380 
7 4 1135 0.66 0.33 0.233 60 4560 
8 4 1136 0.66 0.34 0.428 60 5700 
9 1 1136 0.66 0.30 0.430 60 2100 
10 1 1080 0.70 0.067 0.305 60 4440 
11 1 1135 0.75 0.018 0.140 60 8880 
12 3 1135 0.75 0.023 0.583 60 1920 

 
 

  
Fig. 4. Experimental results (symbols) versus theoretical results (solid curves). a) The scaled dimensionless front end position as a 
function of dimensionless time for all tests. The data for different diameter of the beads have been multiplied by a factor 2, 4 and 8 
in order to be separated in the diagram. b) The profile of the current at different times for Experiment 10. 

 
A series of 12 experiments is performed in a horizontal porous channel of circular cross-section. The 

position over time of the front end of the current is investigated for all experiments, while the analysis of 
the profile of the current was performed for a limited subset thereof. Table 1 lists the experimental 
parameters. The porosity φ = 0.37 is held constant across all tests, and the intrinsic permeability of the 
porous medium is computed with the Kozeny-Carman equation k = φ 3d 2/([180(1 − φ)2]. Figure 4a shows 
the scaled non-dimensional position of the front end xN against time in log–log scale for all experiments. 
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The experimental results, indicated by symbols, collapse satisfactorily onto the theoretical lines, with 
some discrepancy at early times. Figure 4b shows the profiles of the current at different times for one of 
the experiments (#10). One experimental point out of ten is represented for a clear visualization. The 
agreement is generally fairly good, with the most relevant discrepancies near the origin, where the 
injection well is installed. Moreover, the assumptions of horizontal velocities and thin current are invalid 
in this zone; this local behaviour, however, does not affect the body of the current.  

6. Conclusion 

The propagation of a thin current of non-Newtonian power-law fluid in a horizontal porous channel of 
assigned cross-section is amenable to a novel similarity solution if the channel boundary and the volume 
of the current are described by power functions. The current front and profile are obtained in closed form 
for a current of constant volume, and numerically in the general case. Earlier results are recovered for 
Newtonian flow in porous channels of given geometry, or non-Newtonian porous flow in plane geometry. 

The time advancement of the nose of the current for a given fluid is controlled by the critical value αc 
of the volume exponent α. For α > αc ≡ n/(n + 1) the current is faster in cross-sections with a flatter 
bottom (increasing β) whereas for α < αc the current is faster in narrower channels (β → 0). The thickness 
of the current at a given location follows the same trend. A second limit value of α, αl ≡ 2 + 1/β, 
determines whether the current is accelerated or decelerated, regardless of fluid rheology. This second 
limit also discriminates between an average gradient pressure increasing or decreasing with time.  

The theory is supported by experiments conducted at constant volume flux in semi-circular porous 
channels, with different values of permeability and volume discharge, and employing different shear-
thinning fluids. The rheology of the fluid was assessed independently with a rheometer. Results for the 
current front and height over time agree well with the theoretical predictions, with discrepancies within 
the experimental error. Deviations from theory occur near the origin in space and time. 
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