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A relatively heavy, non-Newtonian power-law fluid of flow behavior index n is released from a point
source into a saturated porous medium above an horizontal bed; the intruding volume increases with
time as ta. Spreading of the resulting axisymmetric gravity current is governed by a non-linear equation
amenable to a similarity solution, yielding an asymptotic rate of spreading proportional to t(a+n)/(3+n). The
current shape factor is derived in closed-form for an instantaneous release (a = 0), and numerically for
time-dependent injection (a – 0). For the general case a – 0, the differential problem shows a singularity
near the tip of the current and in the origin; the shape factor has an asymptote in the origin for n P 1 and
a – 0. Different kinds of analytical approximations to the general problem are developed near the origin
and for the entire domain (a Frobenius series and one based on a recursive integration procedure). The
behavior of the solutions is discussed for different values of n and a. The shape of the current is mostly
sensitive to a and moderately to n; the case a = 3 acts as a transition between decelerating and acceler-
ating currents.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Gravity currents occur when a fluid flows into another of differ-
ent density; the motion, which is predominantly horizontal, is
driven by gravity acting on the different densities. These currents
are a common feature in many natural and artificial settings, and
have been studied in the context of atmospheric sciences, geophys-
ics, geology, reservoir engineering and hydrology; their relevance
has generated a large body of literature of theoretical and experi-
mental nature; for a review of past studies see [1–5]. A fundamen-
tal distinction is usually performed between inviscid and viscous
gravity currents, depending whether the buoyancy forces are bal-
anced by inertial or viscous forces. Gravity-driven flows in porous
media are an important sub-class of viscous gravity currents, and
occur when an intruding fluid is introduced or moves into natural
or man-made porous formation initially saturated with another
fluid. Interest in these flows is motivated by the need to model,
among others, subsurface contaminant migration, saltwater intru-
sion, motion of lubricants around well bores, and carbon
sequestration.

The literature is rich in theoretical and experimental studies
that describe the spreading of single-phase Newtonian gravity
currents in porous media: Huppert and Woods [6] analyzed plane
ll rights reserved.

Federico).
flow over a horizontal impermeable surface via a similarity trans-
formation, and performed laboratory experiments to confirm their
theoretical results. Their approach was extended to axisymmetric
spreading by Lyle et al. [7], and to include the effects of a perme-
able [8] or sloping bed [9], and of confining boundaries [10].

An extension of the aforementioned studies to flow of non-
Newtonian fluids in porous media driven by density differences
was undertaken recently by Di Federico et al. [11], who analyzed
the motion of thin gravity currents of a power-law fluid in plane
geometry, deriving a self-similar solution for the current shape
under the hypothesis of a power relationship between the volume
of intruding fluid and time. The solution, extending the derivations
of Huppert and Woods [6] to power-law fluids, was motivated by
the ubiquitous presence of rheological non-linear effects in fluids
of interest in several porous media applications, such as enhanced
oil recovery, propagation of contaminants in the environment,
injection of remediation agents in aquifers ([11–13] and references
therein) or of biomaterials in biological tissues [14,15].

In the present paper, we further extend the study of non-
Newtonian gravity currents in porous media to axisymmetric
spreading due to the release of a time-variable fluid volume, gen-
eralizing the approach taken earlier for Newtonian fluids in [7].
To the best of our knowledge, a similar problem was previously
analyzed only by Pascal and Pascal [16] and Bataller [17], who con-
sidered an assigned injection level in the origin without introduc-
ing the volume increment of fluid with time. A consequence of
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Fig. 1. Gravity current of density q and height h(r, t) released into a porous domain
saturated with fluid of density q � Dq; p0 is the constant pressure at z = h0.
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their different mathematical approach is that the special case a = 3
separately analysed in the present paper is not individuated nor
treated.

The paper is organized as follows: In Section 2, the problem is
formulated in dimensionless form; the governing equations are
solved via a similarity variable in Section 3; analytical and numer-
ical results are then discussed as functions of boundary conditions
and fluid flow behavior index. In Section 4, the singular behavior in
the origin is discussed and approximate internal and intermediate
solutions are derived. Two methods to derive an approximate ana-
lytical solution to the general problem are then presented: the first
one entails the use of a Frobenius series, while the second is based
on a recursive integration procedure. Finally, the special case of a
quadratically increasing fluid inflow rate is examined. Conclusions
are reported in Section 5.

2. Formulation

Flow of Newtonian fluids in porous media is governed by Darcy’s
law rP = �(l/k)u, implying a linear relationship between Darcy
flux u and the gradient of the generalized pressure P = p + qgz, p
being the pressure, z the vertical coordinate, l the dynamic
viscosity, and k the intrinsic permeability coefficient [L2]. For
non-Newtonian power-law fluids, described rheologically by the
Ostwald–de Waele model, expressed in simple shear by

s ¼ m _cj _cjn�1 (where s is the shear stress, _c the shear rate, m the fluid
consistency index [ML�1T n�2] and n the flow behavior index), the
modified Darcy’s law takes in the literature the two equivalent
forms (for a list of references see [18]).

rP ¼ �
leff

k
jujn�1u ¼ �m

k�
jujn�1u; ð1Þ

where leff is the effective viscosity [ML�nT n�2] and k⁄ the general-
ized permeability [Ln+1]. The ratio leff/k = m/k⁄ is termed mobility
and is given by

k
leff
¼ k�

m
¼ 1

2Ct

1
m

n/
3þ n

� �n 50k
3/

� �ð1þnÞ=2

; ð2Þ

where / denotes the porosity and Ct = Ct(n) is a tortuosity factor for
which different expressions are available [19].

Clearly, the two-parameter Ostwald–de Waele rheological mod-
el does not capture complex behavior involving: (i) viscoelasticity
and time-dependency [20]; (ii) the rheology of Herschel–Bulkley
fluids such as certain crude oils [21], which can only be approxi-
mated for vanishing values of the yield stress; (iii) the Newtonian
behavior of pseudoplastic fluids at low shear rates [22]. However,
the rheological behavior of many non-Newtonian fluids of interest
in porous media flow is adequately represented by the power-law
model for a relatively large range of shear rates or shear stresses
[23], rendering it useful for engineering purposes.

The modified Darcy’s law (1) and (2) was first proposed by Bird
et al. [24] on the basis of a capillary bundle model of porous media;
an experimental verification was provided by Cristopher and Mid-
dleman [25]; the model was later amended to include tortuosity
[19].

Nonlinear filtration laws retaining the same power structure of
(1) were adopted by Fadili et al. [26], Orgéas et al. [27] and Vajrav-
elu et al. [28], and confirmed by the experiments of Yilmaz et al.
[29].

Consider an infinite porous domain of depth h0 initially satu-
rated with an ambient fluid of density q � Dq; a thin gravity cur-
rent of a non-Newtonian fluid of density q and height h(r, t)� h0 is
released from an axisymmetric source above an impermeable hor-
izontal bottom (Fig. 1), so that the current volume at time t is given
by qrt

a, with qr[L3T�a] and a being constants; the values a = 0
(equivalent to a Dirac function as forcing term) and a = 1 indicate
respectively the instantaneous release of a fixed volume, and injec-
tion at a constant volume flux.

Considering the pressure to be hydrostatic within the intruding
fluid, and neglecting mixing across the interface, secondary mo-
tions induced by the current between the two fluids, leads the fil-
tration Eq. (1) to become

uðr; tÞ ¼ ðKDqgÞ1=nkð1þnÞ=ð2nÞ � @h
@r

� �1=n

; ð3Þ

where

K ¼ Kð/;m;nÞ ¼ 1
2Ct

50
3

� �ðnþ1Þ=2 n
3nþ 1

� �n /ðn�1Þ=2

m
; ð4Þ

while the local mass balance equation is

1
r
@

@r
ðruhÞ ¼ �/

@h
@t
: ð5Þ

Substituting (3) in (5) yields

ðKDqgÞ1=nkð1þnÞ=ð2nÞ

/
1
r
@

@r
rh � @h

@r

� �1=n
" #

¼ � @h
@t
: ð6Þ

Moreover, global continuity requires

2p/
Z rNðtÞ

0
rhðr; tÞdr ¼ qrt

a: ð7Þ

The mathematical statement of the problem is completed by
the existence of a moving circular boundary of radius rN(t), where
the condition h(r P rN(t), t) = 0 arises for the gravity drainage flow;
in the domain of integration, this reduces to:

hðrNðtÞ; tÞ ¼ 0: ð8Þ

No physical condition can be a priori imposed on the value of
the derivative at the front of the moving boundary. As discussed
in [30] for the propagation of viscous gravity currents, Eq. (3) is to-
tally incorrect at the front, and yet the solution to the governing
equation can be obtained without invoking any further condition
there if the Reynolds number is low (strong viscosity effects) and
the Bond number is high (limited surface tension effects). In fact
the condition on the spatial derivative of h at the front arises by
the governing function (see Eq. (18) in Section 3). Akin to viscous
gravity currents (see [30] for a detailed description) if the limits
on Reynolds and/or Bond number are not satisfied, the solution
should be totally controlled by the conditions at the front, that
must be experimentally detected.
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Introducing the dimensionless variables T = t/t⁄, R = r/r⁄, RN =
rN/r⁄, H = h/r⁄, U = u/V where the time, space and velocity scales are,
for a – 3, t⁄ = (qr/(/V3))1/(3�a), r⁄ = V � t⁄, V = (KDqg)1/nk(1+n)/2n//
(Vella and Huppert [9] and Di Federico et al. [11]), recasts Eq. (8) as
H(RN(T), T) = 0, Eq. (3) as U(R, T) = /(�oH/oR)1/n, and Eqs. (6) and (7)
as

1
R
@

@R
RH � @H

@R

� �1=n
" #

¼ � @H
@T

; ð9Þ

2p
Z RNðTÞ

0
RHdR ¼ Ta: ð10Þ

The mathematical problem constituted by Eqs. (9), (10) is
solved in the sequel for a – 3; for the case a = 3, see Section 4.3.

3. Self-similar solution

To obtain a solution we consider the similarity variable

g ¼ RT �
aþn
3þn; ð11Þ

giving the current extension as

RNðTÞ ¼ gNTðaþnÞ=ð3þnÞ; ð12Þ

where gN = gN(a, n). Then the similarity solution of Eqs. (9) and (10)
with Eq. (8) is of the form

HðR; TÞ ¼ gnþ1
N T

aðnþ1Þ�2n
3þn wðfÞ; f ¼ g=gN ; ð13Þ

with f being the reduced similarity variable. Substituting Eqs. (11)
and (13) in Eq. (9) yields

d
df

fw �dw
df

� �1=n
" #

� nþ a
3þ n

f2 dw
df
þ að1þ nÞ � 2n

3þ n
fw ¼ 0; ð14Þ

while Eqs. (10) and (8) transform respectively into

gN ¼ 2p
Z 1

0
fwðfÞdf

� ��1=ð3þnÞ

; ð15Þ

wðf ¼ 1Þ ¼ 0: ð16Þ

For n = 1, the governing equations reduce to those derived for a
Newtonian fluid in [7] in dimensional form. It follows from (11)
that the velocity of the current is equal to U = /gNT (a�3)/(n+3)

(�dw/df)1/n, i.e. the current accelerates or decelerates depending
whether a > 3 or a < 3.
Fig. 2. Shape factor w versus reduced similarity variable f for different
For the special case a = 0, Eq. (14) can be integrated in closed
form, yielding

wðfÞ ¼ nn

ðnþ 1Þðnþ 3Þn
ð1� fnþ1Þ and

gn ¼ p nn

ðnþ 3Þnþ1

" #�1=ðnþ3Þ

; ð17Þ

which reduces for n = 1 to Eq. (2.15) in [7]. Alternatively, integrating
Eq. (14) between f and one yields

� dw
df

� �1=n

� nþ a
3þ n

f� a
fw

Z 1

f

�fwd�f ¼ 0; ð18Þ

where the over bar indicates a dummy variable. In the limit a ? 0
the last term is null and Eq. (18) can be directly integrated yielding
for gN the solution obtained in Pascal and Pascal [16] in dimensional
form.

For arbitrary a (for the special case a = 3, see Section 4.3)
Eq. (14) can be solved numerically with (16) and a second bound-
ary condition, which can be computed developing the asymptotic
solution in terms of a Frobenius series near the current tip (f = 1)
as detailed in Appendix A, obtaining

dw
df

����
f!1
¼ � aþ n

3þ n

� �n

; ð19Þ

thereby generalizing to a non-Newtonian fluid the behavior in the
current tip of the asymptotic solution derived by Barenblatt et al.
[31] and Dussan and Auzerais [32] for a Newtonian one. The numer-
ical integration of Eq. (14) in the domain [0, 1 � e], with boundary
conditions w(f ? 1 � e) = ((a + n)/(3 + n))ne and dw/df(f ? 1 � e) =
((a + n)/(3 + n))n, e being a small quantity, is performed by using
Wolfram Mathematica� 7. Results are shown as solid curves in
Fig. 2, depicting the shape factor w for a ranging between 0 and 2
and different values of n, taken to be 0.50, 0.75 and 1.00 to cover
the range most frequently encountered in practical applications
with shear thinning fluids; the analysis is also performed for
n = 1.50, to account for the rarer possibility of shear thickening
fluids.

For a = 0, the numerical solution coincides with the analytical
one (black dots).

The profiles in Fig. 2 decrease as n increases for a < 1; the re-
verse is true for a > 1. For a given fluid, the shape factor increases
with a, i.e. the fluid volume released into the domain.
values of a and n = 0.5 (a), n = 0.75 (b), n = 1.0 (c), and n = 1.5 (d).
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Table 1
Ratio between current length in plane and radial geometry XN/RN, versus time for
a = 0, 1 and different values of n. Bold cases indicate a ratio smaller than unity.

a 0 0 0 0 1 1 1 1

T/n 0.50 0.75 1.00 1.50 0.50 0.75 1.00 1.50

0.0001 0.86 0.73 0.64 0.55 0.28 0.27 0.28 0.29
0.001 0.99 0.86 0.78 0.68 0.41 0.41 0.41 0.41
0.01 1.12 1.02 0.94 0.85 0.61 0.60 0.60 0.59
0.1 1.28 1.20 1.14 1.06 0.91 0.89 0.87 0.86
1 1.46 1.42 1.38 1.32 1.35 1.31 1.28 1.24
10 1.67 1.68 1.68 1.64 2.00 1.94 1.88 1.78
100 1.90 1.99 2.03 2.04 2.97 2.87 2.76 2.57
1000 2.17 2.35 2.46 2.54 4.41 4.24 4.06 3.70
10,000 2.47 2.78 2.98 3.17 6.54 6.27 5.95 5.33

Fig. 3. The prefactor gN versus a for different values of n.
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Fig. 3 plots the multiplicative constant gN as a function of a
evaluated from the numerical solution using Eq. (15). gN shows
lower values for shear-thinning than for shear-thickening fluids
when a / 2.3; the reverse is true for a ’ 2.3; the dependence of
gN on the value of flow behavior index n is relatively modest. For
a Newtonian fluid the shape factor w (for a ranging between 0
and 2) and the prefactor gN perfectly reproduce the results derived
by [32,7] (comparison not shown).

Once gN is known, the current extension RN can be evaluated
from (12); for T < 1, the current head advances farther as n de-
creases; the reverse is true for T > 1. In Table 1, the ratio XN/RN

between the current length in plane geometry [11], and that in
radial geometry derived in the present paper, is reported versus
time in the interval T = 0.01–100 for a = 0, 1 and different values
of n. The comparison shows that plane currents are faster than axi-
symmetric ones except for very short times, when the reverse is
true; the value of the threshold time is a function of a and n.

Fig. 4 depicts the current evolution over time, for a = 0, 1
n = 0.5, 1.5, and T = 0.01–100. Fig. 4a and b illustrates the release
of a fixed fluid volume, showing that shear-thickening profiles
are more elongated than shear-thinning ones due to their faster
rate of advancement. A similar behavior is observed for constant
inflow rate (Fig. 4c and d), in analogy to non-Newtonian free sur-
face gravity currents [33].

Knowledge of the current profile and length is relevant to verify
whether the injected fluid has reached a given portion of the do-
main; this is of interest in contamination problems and in remedi-
ation efforts.

It is worth noticing that the ratio between the current thickness
and its length is given by H/RN = T(a(n+1)�2n)/(a+n), which is a decreas-
ing/increasing function of time respectively for a < 3 and a P 3; in
the latter case, our solution is valid only for small times, as the
assumption of a thin intruding current is eventually violated for
large times.
4. Approximate solutions and special cases

In this section we discuss a number of approximate solutions to
the general problem for a – 0, to evidence some physical aspects of
the flow field useful for further analysis. While numerical solutions
are a powerful tool to solve problems intractable analytically, a
close examination of related processes like flow stability preferably
require, also for the sake of generality, an analytical knowledge of
the basic flow, even in approximate form; the details in the degree
of approximation are also necessary for the accuracy estimation of
the solution.

The section closes with an analysis of the special case a = 3 (i.e.
a quadratically increasing fluid inflow rate), showing the need for
an additional velocity scale.
4.1. Approximation by internal, external, and intermediate solutions

The differential Eq. (14) becomes singular in the origin because
here the higher order term vanishes, as well as near the current tip
if we impose there a null value of the function. While the
singularity near the current tip is well managed by the Frobenius
asymptotic series described in Appendix A, the behavior near the
origin can be analyzed via a singular perturbation technique. Intro-
ducing an inner variable t = f/e, with e a small quantity, Eq. (14)
becomes

d
dt

tw � dw
dt

� �1=n
" #

� nþ a
3þ n

eðnþ1Þ=nt2 dw
dt

þ að1þ nÞ � 2n
3þ n

eðnþ1Þ=ntw ¼ 0; ð20Þ

Taking the limit e ? 0 results in

d
dt

tw �dw
dt

� �1=n
" #

¼ 0; ð21Þ

having solution

w¼ðC1tð1�nÞ þC2Þ1=ðnþ1Þðn–1Þ and w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 lntþC2

p
ðn¼1Þ; ð22Þ

where C1 and C2 are constants. The second expression in Eq. (22)
was already derived by Lyle et al. [7]. For n P 1 the shape factor
w grows very fast in the limit t ? 0, as confirmed by the numerical
integration for a – 0. The growth is completely balanced for a = 0,
as evident in the smooth analytical solution (17) and as shown by
taking the limit of (18) for f ? 0. Eq. (22) represents the internal
solution, i.e. the approximation of the solution in a limited region
near the origin. The external solution, which approximates the
solution for large f, in theory could be computed by balancing the
residual terms of order O(e1+1/n), but the result w = C3/x is incorrect
since it cannot satisfy the boundary condition at the current tip.
Hence we choose to assume the external solution equal to the
Frobenius series near the current tip (see Appendix A). The two
functions are

wint ¼ C1
f
e

� �ð1�nÞ
" #1=ðnþ1Þ

; n–1; e! 0þ; f! 0þ; ð23Þ

wext ¼ a0ð1� fÞ þ a1ð1� fÞ2 þ a2ð1� fÞ3 þ Oðf4Þ; ð24Þ

where the second constant C2 in the internal solution has been fixed
equal to zero. The first constant is computed by imposing the
matching condition lime!0þ ;f!0þwint ¼ limf!0þwext , yielding

wint ¼
X2

k¼0

ak

 !
fð1�nÞ=ð1þnÞ: ð25Þ



Fig. 4. Profiles of the current at different times for (a) a = 0 and n = 0.5; (b), as (a) but n = 1.5; (c) a = 1 and n = 0.5; and (d) as (c) but n = 1.5.

Fig. 5. Approximation of the shape function (bold curve) through the internal
solution (dot-dashed curve), the external solution (dashed curve), and the inter-
mediate solution (dotted curve), for n = 2, a = 2.
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Eq. (25) reveals that the origin is an asymptote only for the case
n > 1. Since the profiles show that for a = 0 no singularity develops
near the origin, a dependence of the coefficient C1 on a is expected.
An intermediate limit analysis reveals that this conjecture is true.
Performing the expansion in an inner variable of Eq. (18) gives

� dw
dt

� �1=n

� nþ a
3þ n

enþ1t� a
tw

en�1
Z 1

0

�fwdf�
Z et

0
e2twdt

� �
¼ 0: ð26Þ

Note that the integral contribution has been split in a finite or-
der term plus a residual contribution which is at least of order
O(en+5). Hence the two main terms to balance are

� dw
dt

� �1=n

� a
tw

en�1
Z 1

0

�fwd�f

� �
¼ 0 for t! 0; n–1: ð27Þ

Integration results in the intermediate solution

wimd ¼ enðn�1Þ=ðnþ1Þ nþ 1
1� n

an
Z 1

0

�fwd�f

� �n

ð1� t1�nÞ
" #1=ðnþ1Þ

ð28Þ

As long as en(n�1)/(n+1) is of finite order in the intermediate limit
of small f, Eq. (28) is a better approximation than Eq. (22). No
asymptote is expected for n > 1 or for a = 0. The integral can be
evaluated by using the external solution in Frobenius series, which
gives an excellent approximation of the true shape factor.

A plot of the internal, of the external and of the intermediate
functions versus the reduced similarity variable is shown for
n = 2, a = 2 in Fig. 5, in which the horizontal axis has a square root
distortion for a more detailed representation of the internal region.
The internal and intermediate functions are given by (25) and (28)
respectively, while the external solution is a Frobenius series with
four terms. The relative error is shown in the upper Figure panel.
Note that the intermediate solution is almost coincident with the
numerical solution near the origin and is a better approximation
than the inner solution, while the internal solution has an error
exceeding the displayed range. The introduction of a matching
function between the intermediate and the external solutions is
potentially meaningful only in a small interval near f � 0.3.

In conclusion, the rapid growth and the asymptotic behavior of
the shape function near the origin can be mathematically handled;
nevertheless we highlight that such behavior of the shape function
invalidates the hypotheses of the model, being a violation of the
small-slope approximation in the adopted theory. A reasonable
practical approach is to exclude from the computation a small cyl-
inder with f < f0 containing a negligible volume of fluid compared
to qrt

a. This does not influence the solution which is obtained inte-
grating from the front end of the current.
4.2. Approximate solutions in series and by iterative integration

In the following we briefly consider and discuss two different
methods to obtain an approximate solution valid for any value of
a and n. Even though a numerical solution can be easily computed
with high accuracy, analytical or semianalytical solutions are



Fig. 7. Shape factor w versus f obtained numerically and quasi-analytically with the
integration by approximation for shear-thickening fluid with n = 2 and a = 1. The
bold curve is the numerical result, the dotted line the analytical solution w0 (17),
the dashed line is the first iteration w1 and so on.

Fig. 8. Values of gN versus a for a shear-thickening fluid with n = 2 obtained
numerically (bold line), with Eq. (B.4) (dashed line) and with a Frobenius series with
four terms (dashdot line). The upper insert shows the relative error.
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better suited whenever it is necessary to evaluate the relative
importance of the different terms in the balance equation, or for
extracting the behavior of a variable, like the dependence of the
position of the front edge on the parameter a. The first one, pre-
sented in the Appendix A and already adopted in [11], entails the
use of a Frobenius series, and allows derivation of an approximate
solution for the shape factor given by Eq. (A.1). Since shear thin-
ning fluids do not show a singularity in the origin, the Frobenius
series is an excellent expansion in the entire domain; the adoption
of a few terms of the series implies a very limited error in the shape
factor and an even smaller error in the current length, which is
fairly uniform with the parameter a, as shown by Fig. 6, which
illustrates the prefactor gN (a proxy for current length) versus a
for a shear thinning fluid with n = 0.5, demonstrating that the
two curves obtained numerically (bold line) and with a Frobenius
series of four terms exhibit a difference less than 2%.

The shear thickening fluids require an alternative approach
based on an iterative integration of Eq. (18) with an approximation
of the integral term, generalizing the comprehensive one devel-
oped for Newtonian fluids by Li et al. [34] and also applied to plane
gravity currents [11]. The approach is detailed in Appendix B.

The convergence of the latter solution is very fast, as shown in
Fig. 7 for the case n = 2, a = 1, where a single iteration gives a
marked improvement over the starting solution w0 and a good
agreement with the numerical one. The final approximation is of
order anr with a better approximation for smaller values of a. The
drawback of the method illustrated in Appendix B is the difficulty
to solve analytically the integrals that contain numerous terms.

Fig. 8 shows the comparison between the values of the prefactor
gN obtained by direct numerical integration and the approximate
method of Appendix B. The error is quite limited even for larger
values of exponent a. Similar results are obtained for different val-
ues of the flow behavior index if n > 1, even though the error grows
with n. In the same figure, the results obtained with a Frobenius
series are shown for comparison, demonstrating an even better
approximation despite the fact that the Frobenius series loses
validity near the origin, where a singularity is expected for a – 0.
Note that the error in evaluating gN is smaller than the correspond-
ing error in the shape factor, because the larger errors in the
approximation of the shape factor are for f ? 0, i.e. in a region
which gives a small contribution to the integral in Eq. (B.1) and
which can be safely excluded from the computation since its con-
tribution to the total volume of fluid is negligible.

4.3. The special case a = 3

When a = 3 the characteristic time scale t⁄ introduced in Section
2 is no longer defined, and an additional natural velocity scale
Fig. 6. Values of gN versus a for a shear thinning fluid with n = 0.5 obtained
numerically (bold line) and with a Frobenius series of four terms (see Appendix A)
(dashed line plus crosses). The dashdot curve is the relative error.
(qr//)1/3 enters the problem. A new set of dimensionless variables
is thus defined in analogy to [9] as eR ¼ r=~r�, eRN ¼ rN=~r�, eH ¼ h=~r�,
where ~r� ¼ ðqr=/Þ

1=3~t� is a spatial length scale and ~t� an arbitrary
time scale. Eqs. (9) and (10) are then re-cast as
dreR @

@eR eR eH � @
eH
@eR

 !1=n
24 35 ¼ � @ eH

@eT ; ð29Þ

2p/
Z eRNðeT Þ

0

eR eHdeR ¼ eT 3; ð30Þ
where dr = V/(qr/u)1/3 is the ratio between the two velocity scales in
the problem. Here, the similarity variable (12) reduces to g ¼ eR=eT ;
in analogy to the general case, the current height is given byeHðeR; eT Þ ¼ gnþ1

N Twðg=gNÞ, where the shape factor w is derived by
solving
dr
d
df

fw � dw
df

� �1=n
" #

� f2 dw
df
� fw ¼ 0: ð31Þ

Since no analytical solution is available for Eq. (31), a numerical
integration is required; the boundary conditions are derived by
means of the same procedure adopted for the general case (see
Eq. (A.8)). The results of this calculation are shown in Fig. 9 for dif-
ferent values of dr and two values of n. An increase in dr produces a
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Fig. 9. Shape factor for a = 3 and dr = 0.2, 1.0, 5.0 with (a) n = 0.50 and (b) n = 1.50.
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decrease in the shape factor and vice versa; the impact of the ac-
tual value of dr is larger for shear-thickening than for shear-thin-
ning fluids.

5. Conclusions

The following conclusions may be derived from our study of the
horizontal axisymmetric spreading of non-Newtonian power-law
gravity currents in a porous layer initially saturated with an ambi-
ent fluid of lower density:

1. The set of non-linear differential equations governing the
spreading admits a relatively simple similarity solution,
which is derived in closed-form for the release of a fixed vol-
ume of fluid, and numerically for time-dependent inflow.
For a Newtonian fluid, the formulation and solution reduce
to those obtained earlier in [7].

2. The solution: (a) has no undetermined parameters, since the
motion of the external ambient fluid is neglected; (b) is
completely independent on the details near the current
tip, since the boundary conditions derive from an analysis
of the differential equation; and (c) is globally insensitive
to front effects for low Reynolds number and high Bond
number.

3. The shape factors: (a) have an infinite slope in the origin for
shear-thickening fluids and a continuous inflow; for an
instantaneous release or shear-thinning fluids, no asymp-
tote is present; (b) exhibit a finite slope at the current tip,
decreasing with increasing flow behavior index, in variance
with free-surface flows; (c) depend strongly upon the
release rate and moderately upon the value of flow behavior
index; (d) if an asymptote is present, may be approximated
near the origin by an intermediate solution considering only
the leading terms; and (e) if no asymptote is present, may
be approximated in the whole domain by a Frobenius series
(see next point).

4. Two approximate analytical solutions are derived to comple-
ment the numerical results. The first entails the use of a
Frobenius series, and provides a power formulation of the
shape factor near the current tip; for shear-thinning fluids,
not showing a singularity in the origin, the solution is accept-
able in the entire domain; the computation of the coefficients
is in principle extendible to any order adopting customary
symbolic software. The second approximation, valid for both
shear-thickening and shear-thinning fluids, is based upon a
series expansion in the exponent governing the current vol-
ume increase with time, followed by an integration by itera-
tion; it provides a fairly accurate solution in the entire
domain, but analytical integration soon becomes too
cumbersome.

5. Our result, despite model simplifications, provide insight
into non-Newtonian effects on flow of gravity currents in
porous media by means of closed-form results with which
the sensitivity of results to different parameters may be
tested. The prediction of the current profile and length for
instantaneous and continuous injection are relevant in con-
tamination problems and remediation efforts.

Appendix A. Derivation of an asymptotic solution near the
current tip (f = 1)

Here we wish to derive a series expansion of the shape factor
being the solution of the differential problem given by Eq. (14)
with a – 3, subject to the boundary condition w(f ? 1) = 0. The
derivation has the additional aim of deriving a second boundary
condition in f = 1, suitable for numerical integration. Introducing
the variable v = 1 � f, we seek a solution as v? 0 in the form of
a Frobenius series with indicial exponent b

wðvÞ ¼
X1

0

akvkþb; ðA:1Þ

already fulfilling the boundary condition w(v ? 0) = 0. Deriving its
derivative and 1/nth power (for explicit expressions see [11]) and
substituting in (14) leads to

� a
nþ1

n
0 b

1
n

b� 1
n
þ b

� �
vb�1

n þb�1 � a1a
1
n
0b

1
n

b� 1
n
þ bþ 1

� �
vb�1

n þb þ � � �

þ aþ n
3þ n

X1
0

akðbþ kÞvbþk�1 � aþ n
3þ n

X1
0

akðbþ kÞvbþkþ1

þ aðnþ 1Þ � 2n
3þ n

X1
0

akvbþk � aðnþ 1Þ � 2n
3þ n

X1
0

akvbþkþ1 ¼ 0; ðA:2Þ

Equating the lowest powers of v (for k = 0) gives b = 1, while equat-
ing the coefficients of powers of v (for k > 0) to zero yields
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a0 ¼ f n; ðA:3aÞ

a1 ¼
a0nðg � 2f þ 2a1=n

0 Þ
2ð2þ nÞa1=n

0 � 2fn
; ðA:3bÞ

a2 ¼
a0n2ðg � f Þ � a1n2ðg � 4f Þ � 3a1=n

0 a1nð2þ nÞ þ 6a1=n�1
0 a2

1

3n½nf � a1=n
0 ð3þ nÞ�

;

ðA:3cÞ

with

f ¼ aþ n
3þ n

; g ¼ aðnþ 1Þ � 2n
3þ n

; ðA:4a;bÞ

Hence the second-order asymptotic solution is

wðfÞ ¼ aþ n
3þ n

� �n

ð1� fÞ þ Oðf2Þ; ðA:5Þ

its first derivative evaluated at f = 1 is then easily derived as Eq.
(19). For a = 0, the boundary condition satisfies the analytical solu-
tion in Eq. (17).

We next discuss the special case a = 3, governed by Eq. (31) sub-
ject to w(f ? 1) = 0. Following the approach adopted for the gen-
eral case, we again find the indicial exponent to be 1; hence the
Frobenius series takes the form

wð1� fÞ �
X1

0

akð1� fÞkþb
; ðA:6Þ

in which the first three coefficients are given by

a0 ¼
1
dr

� �n

; ðA:7aÞ

a1 ¼
a0nð2dra

1=n
0 � 3Þ

2ð2þ nÞdra
1=n
0 � 2n

; ðA:7bÞ

a2 ¼
2a0n2 � 5a1n2 þ 3drna1=n

0 a1ð2þ nÞ � 6dra
1=n�1
0 a2

1

3n½dra
1=n
0 ð3þ 1Þ � n�

: ðA:7cÞ

Hence at first order

dw
df
¼ � 1

dr

� �n

þ OðfÞ: ðA:8Þ
Appendix B. Derivation of the approximate solution by iterative
integration

In order to obtain an approximation of the shape factor, we con-
sider a series expansion of Eq. (14) for small a, followed by an inte-
gration by iteration of Eq. (18) with

dw1

df
¼ � nþ a

3þ n
fþ a

fw0

Z 1

f
fw0df

� �n

dw2

df
¼ � nþ a

3þ n
fþ a

fw1

Z 1

f
fw1df

� �n

� � �
dwr

df
¼ � nþ a

3þ n
fþ a

fwr�1

Z 1

f
fwr�1df

� �n

;

ðB:1Þ

where w0 is the starting solution coincident with the analytical
solution for a = 0 (Eq. (17)), w1 is the is the solution after the first
iteration, and so on.

Some indications on the leading terms behavior can be detected
analyzing the structure of the differential problem. For simplicity
of computation we will focus the analysis on fluids with n = 2. In
this case the first iteration in Eq. (B.1) gives the following
approximation
w1 ¼
4

75
ð1� f3Þ

þ 1
75

a 4p
ffiffiffi
3
p
� 6

ffiffiffi
3
p

tan�1 1þ 2fffiffiffi
3
p

� �
þ 9 ln

3
1þ fþ f2

� �� �
þ 1

300
a2 27

f
þ 9

f� 1
1þ fþ f2 þ 24

ffiffiffi
3
p

tan�1 1þ 2fffiffiffi
3
p

� �
� 8p

ffiffiffi
3
p
� 27

� �
;

ðB:2Þ

which introduces a fast growing term �1/f in the quadratic contri-
bution a2. As the first moment of the approximate shape factor gi-
ven by Eq. (B.2) is equal toZ 1

0
fw1df ¼ 2

125
þ 1

150
að9þ p

ffiffiffi
3
p
� 9 ln 3Þ þ 1

600
a2ð9

þ 2p
ffiffiffi
3
p
Þ þ Oða3Þ; ðB:3Þ

the factor gN can be obtained using Eq. (15) as

gN ¼ 2p 2
125
þ 1

150
að9þ p

ffiffiffi
3
p
� 9 ln 3Þ þ 1

600
a2ð9þ 2p

ffiffiffi
3
p
Þ

� �� ��1=

ðB:4Þ

For a generic value of n, the contribution of the first order
approximation in the limit f ? 0 shows that if n < 1 no singularity
is expected in the origin.
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In Fig.2 p.33 the limits of the horizontal axis in the figure are wrong. In facts the limits are 0-0.4 but 
should be 0-1.0. The corrected Figure is below: 
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