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KEY POINTS 

 A conceptual model is presented for non-Newtonian fluid flow in fractured media. The  fluid is represented via a 
truncated power-law model, the fracture aperture via a stochastic model 

 The fracture flowrate is derived for flow perpendicular to aperture variation as a function of the parameters 
describing the fluid rheology and the variability of the aperture field 

 Adoption of the pure power law model leads to overestimation of the flowrate with respect to the truncated model, 
more so for large external pressure gradient and/or aperture variability  

1 INTRODUCTION 

Hydraulic fracturing is largely used for optimal exploitation of oil, gas and thermal reservoirs. Non-
Newtonian fluids are most frequently used in this type of operations (Linkov, 2014), and also in other 
application in reservoir engineering (Ozdemirtas et al., 2010). Hence, it is important to model non-
Newtonian flow in fractured media. A first step in this process is a detailed understanding of flow in a single 
fracture, as the space between fracture walls (termed fracture aperture) is typically spatially variable. 
Modeling this variability can be achieved with a deterministic (Di Federico, 1998) or stochastic (Silliman, 
1989; Di Federico, 1997) approach, and the flowrate occurring in a single fracture under a given pressure 
gradient be determined as a function of the parameters describing the variability of the aperture field. From 
the flowrate, an equivalent aperture can then be derived (Di Federico, 1998; Silliman, 1989).   

Another relevant issue is the rheological nature of the non-Newtonian fluid. Typically, power-law fluids 
governed by the four-parameter Carreau constitutive equation are employed (Lavrov, 2015); this rheological 
equation is, however, well approximated by the truncated power-law model, whose adoption is more suitable 
for numerical modeling of flow in variable aperture fractures (Lavrov, 2013). To this end, Lavrov (2015) 
derived the expressions for flow of a truncated power-law fluid between parallel walls under a constant 
pressure gradient.  

This paper extends the adoption of the truncated power-law model to variable aperture fractures, with the 
aim of understanding the joint influence of rheology and aperture spatial variability. Section 2 summarizes 
results on flow of a truncated power-law fluid between parallel walls; Section 3 presents the general 
expression of the flowrate for flow perpendicular to aperture variation; Section 4 illustrates the case of a 
lognormal aperture variation, comparing results with those obtained for pure power-law fluids.    

2 FLOW OF TRUNCATED POWER-LAW FLUID FLOW IN A CONSTANT APERTURE FRACTURE 

Consider the flow of a shear-thinning non-Newtonian fluid in a fracture of width W and constant aperture 
b ; the coordinate system is shown in Figures 1a-1b; the fracture walls are at 2/bz   and 2/bz  . 
Suppose a uniform, positive pressure gradient   LLpppx /)()0(   is applied in the x  direction. 
Assuming that Wb  , the velocity components in the y  and z  directions are zero, and the only nonzero 

velocity component xv  is solely a function of z . The fluid is described by the rheological truncated power-

law model, reading, in the simple shear situation described above,  a , with   shear stress and   shear 

rate; the apparent viscosity a  is given by  
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In eq. (1), depicted in Figure 1c,  0 is the viscosity at zero shear rate,   is the limiting viscosity 

for  , n  and m are the rheological and consistency index, respectively,    nm  11
01  is the lower 

shear rate at which the high viscosity cutoff  0 is introduced, and    nm 
 11

2  is the higher shear rate 

at which the low viscosity cutoff   is introduced. The above four-parameter model is identical to the pure 

power-law model of parameters n  and m  in the intermediate shear stress range 21    , and overcomes 

the limitation of having a  for 0  and 0a  for  . Lavrov (2015) showed that the 
truncated power-law model is practically indistinguishable, for practical purposes, from the Carreau model. 
He also derived the velocity field )(zvx  and the flowrate per unit width WQq xx  under a constant pressure 

gradient xp . The flowrate expression can take three different expressions, given by   
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According to eq. (2), three flow regimes (I = low shear rate regime, II  = intermediate shear rate regime, 
and III  = high shear rate regimes) are possible within the fracture, depending on the relationship between its 
aperture b and the two threshold apertures 1b and 2b . 

 
Figure 1. Panel (a) shows the fracture sketch with applied pressure gradient; panel (b) shows the fracture profile in the x direction; 
panel (c) depicts the apparent viscosity as a function of shear rate for the two models: truncated power-law and pure power-law. 

3 FLOW IN A VARIABLE APERTURE FRACTURE 

The fracture aperture is usually taken to vary as a two-dimensional, spatially homogeneous and correlated 
random field, with a probability density function f(b). The fracture dimensions are assumed to be much 
larger than the integral scale of the aperture autocovariance function. Then, under ergodicity, spatial 
averages and ensemble averages are interchangeable, and a single realization can be examined (Silliman, 
1989; Lavrov, 2013). To derive an approximate expression for the equivalent aperture, one-dimensional flow 
can be considered in two limiting cases; in the first, the pressure gradient is transverse to the aperture 
variability; in the second, the pressure gradient is parallel to aperture variability. The equivalent aperture for 
flow in a 2-D aperture field is taken as the geometric average of the equivalent apertures derived for the two 
limit cases. This approach was used for Newtonian flow by Silliman (1989) to derive estimations of 
hydraulic and transport apertures, and by Di Federico (1997, 1998) to derive an estimate the hydraulic 
aperture for non-Newtonian flow under stochastic and deterministic aperture variation, respectively. 
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Here, we consider exclusively case 1 with flow parallel to constant aperture channels, i.e., transverse to 
aperture variation (Figure 2a); the applied pressure gradient is   LLpppx )()0(  ; the volumetric flux is 
obtained through the following procedure.    

 

 

Figure 2. Panel (a) shows flow perpendicular to aperture variation described by the aperture density function f(b); panel (b) depicts 
the flowrates for the truncated and pure power law case versus pressure gradient for fixed aperture variability; panel (c) does the 
same versus aperture variability for fixed gradient. 

The fracture model is discretized into N neighboring channels, each having equal width and constant 
aperture ib . Depending on the local aperture value, in each channel the flow regime is either I, or II, or III, 
and the corresponding flowrate per unit width is given either by eq. (2a), (2b), or (2c). The number of 
channels in each regime is IIIIII NNN ,, , respectively, and the total width of the channels in each regime is 

IIIIII WWW ,, , with IIIIII NNNN   and IIIIII WWWW  ; the i-th channel in each regime j ( 3,2,1j ) 

has width jjji NWW / . Assuming that the shear between neighboring channels and the drag against the 

connecting walls may be neglected, the total flowrate in the x direction is  
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Taking the limit as jN , the width of each channel tends to zero and the discrete aperture variation 

to a continuous one; then under ergodicity, and exploiting the previous relationships, eq. (3) gives for the 
flowrate per unit width in the x direction the expression 
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where  bf  and  bF  are the pdf and cumulative distribution function of the aperture field, respectively.  

4 ESTIMATE OF FLOWRATE AND DISCUSSION 

A lognormal distribution is adopted for the aperture field, consistently with earlier work on flow and 
transport in variable aperture fractures (Silliman, 1989). Its probability distribution function is given by 
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where  2exp 2 bbg  is the geometric mean,  b  the arithmetic mean, and 2  the variance of 

bln . Utilizing eqs. (4)-(5) with eq. (6) gives for the factors jI and jP  (j = 1, 2, 3) the following expressions: 
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where erf(.) is the error function. The expression of the flowrate given by eq. (4) with eqs. (7-8) is compared 
with that of a pure power-law (pl) fluid of parameters m  and n   (Di Federico, 1998), i.e.  
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Clearly, xplx qq   for 0  and 0 . Both flowrates xq  and xplq  are plotted in Figures 2b and 2c 

for sPa 0.5 0  , sPa 0.001  , 3.0n  and nsPa  005.0 m ; Figure 2b depicts xq  and xplq  

versus  xp for fixed 3.0 ; Figure 2c does so versus   for fixed m/Pa  50 xp . It is seen that the 
flowrate for the truncated model is always decidedly smaller than that associated with the pure power-law, 
except for very small pressure gradients. The difference between the two increases as the external pressure 
gradient and aperture variability become larger. Hence, adoption of the pure power law model leads to a 
significant overestimation of the flowrate with respect to the more realistic truncated rheological model. 
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