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Highlights1

• Axisymmetric gravity currents of power-law fluid in domain with hor-2

izontal permeability variation3

• Self-similar solutions are derived as functions of model parameters4

• Theoretical results for radius and profile are validated by experiments5

• A review on porous gravity currents of power-law fluid is carried out6

• Key parameters governing the dynamics of power-law gravity currents7

are compared8
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Abstract17

We present an investigation on the combined effect of fluid rheology and18

permeability variations on the propagation of porous gravity currents in ax-19

isymmetric geometry. The fluid is taken to be of power-law type with be-20

haviour index n and the permeability to depend from the distance from the21

source as a power-law function of exponent β. The model represents the22

injection of a current of non-Newtonian fluid along a vertical bore hole in23

porous media with space-dependent properties. The injection is either in-24

stantaneous (α = 0) or continuous (α > 0). A self-similar solution describing25

the rate of propagation and the profile of the current is derived under the26

assumption of small aspect ratio between the current average thickness and27

length. The limitations on model parameters imposed by the model assump-28

tions are discussed in depth, considering currents of increasing/decreasing29

velocity, thickness, and aspect ratio, and the sensitivity of the radius, thick-30

ness, and aspect ratio to model parameters. Several critical values of α and β31

discriminating between opposite tendencies are thus determined. Experimen-32

tal validation is performed using shear-thinning suspensions and Newtonian33

mixtures in different regimes. A box filled with ballotini of different diam-34

eter is used to reproduce the current, with observations from the side and35

bottom. Most experimental results for the radius and profile of the current36

agree well with the self-similar solution except at the beginning of the process,37

due to the limitations of the 2-D assumption and to boundary effects near38

the injection zone. The results for this specific case corroborate a general39

model for currents with constant or time-varying volume of power-law fluids40
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propagating in porous domains of plane or radial geometry, with uniform41

or varying permeability, and the possible effect of channelization. All results42

obtained in the present and previous papers for the key parameters governing43

the dynamics of power-law gravity currents are summarized and compared44

to infer the combinations of parameters leading to the fastest/lowest rate of45

propagation, and of variation of thickness and aspect ratio.46

Keywords: gravity current, self similar, non-Newtonian, experiment, review47

1. Introduction48

The propagation of gravity-driven flows in porous media is but a chapter49

of the fascinating ’book’ on gravity currents (hereinafter GCs), which has50

received considerable attention [1], with new ’chapters’ being continuously51

added. Yet also porous GCs by themselves, originating from such diverse ap-52

plications (carbon dioxide sequestration, mining engineering, environmental53

pollution and remediation, seawater intrusion, to name but a few) constitute54

such a wide topic that a comprehensive summary is arduous. In the authors’55

view, the recent advancements on gravity-driven porous flow belong to two56

broad categories.57

The first group of contributions has as a common feature the modelling58

of the spatial variations of properties and/or of boundary conditions in nat-59

ural (geologic) media, and the description of their topographical features.60

Examples of such contributions are Huppert et al. [2], Sahu and Flynn [3],61

and Ngo et al. [4], where heterogeneity is modelled via discrete layers or62

intrusions of finite extent; Islam et al. [5], who introduce explicitly small-63

scale heterogeneity; Yu et al. [6], who account simultaneously for drainage64

from a permeable substrate and an edge; and Huber et al. [7], who aim at65

reproducing the effect of diverse CO2 injection strategies.66

The second broad group of GC-themed contributions presents an im-67

proved description of fundamental mechanisms via a more sophisticated mod-68

elling. Some relevant examples are the effects of a change in flux (Ball et al.69

[8]) or of stratification in an intruding current (Pegler et al. [9]); the in-70

vestigation of the CO2 sequestration mechanisms into deep saline aquifers,71

involving two-phase flow (Guo et al. [10]) or with possible background hy-72

drological flow (Unwin et al. [11]); the interactions between gravity currents73

and convective dissolution (Elenius et al., [12]), or geomechanics (Bjornara74
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et al. [13]); the adoption of realistic rheological models in the study of non-75

Newtonian GCs (Di Federico et al. [14]).76

Some recent contributions belong to both categories, and are associated,77

for example, with the modelling of CO2 sequestration [4] or the simultaneous78

presence of non-Newtonian flow and spatial heterogeneity or specific topo-79

graphical features. The latter topic has been investigated in depth in several80

papers, considering deterministic heterogeneity and radial [15] or plane geom-81

etry [16], and channelized flow [15]. The motivation for these studies lies in a82

multiplicity of applications involving complex fluids flowing in geologic media83

characterized by spatial heterogeneity at various scales: oil and displacing84

suspensions in reservoir flow, remediation carriers and liquid contaminants85

in the subsurface environments, drilling and grouting fluids; earlier works86

[15, 16] list specific references to these applications.87

Studies of flows of non-Newtonian GCs rely on a body of knowledge ac-88

cumulated for Newtonian currents: the reference works of Huppert & Woods89

[17] for plane geometry, and by Lyle et al. [18] for axisymmetric geometry,90

were extended to power-law fluid flow by Di Federico et al. [19, 20], which,91

in turn, set the stage for the more complex setups cited earlier. Variations92

of properties along vertical and horizontal direction were considered in the93

context of Newtonian GCs by Zheng et al. [21, 22]. While vertical variations94

mimic the effect of stratification, horizontal variations may represent e.g. the95

effect induced by the drilling of a well, and thus are of interest especially in96

the context of axisymmetric propagation. A review of existing studies on97

non-Newtonian porous GCs reveals the lack of a study coupling power-law98

rheology and permeability gradients along the flow direction in axisymmetric99

flow. Such a study is presented here in Sections 2-5 considering the usual100

hypothesis of a GC of time-variable inflow.101

The exposition is organized as follows. The mathematical problem is102

formulated in section 2 for a radial injection, and solved in section 3 in self-103

similar form generalizing the results of Di Federico et al. [20]. Section 4104

discusses the dependency of key time exponents governing the propagation105

of the current on problem parameters, along with the limitations imposed106

by modelling assumptions. Experimental results are presented in Section107

5; first, the experimental set-up is described, with special attention on the108

difficulties implied by simulating heterogeneity; then results from a series of109

tests are compared with the theory in constant- and variable-flux regime.110

The theory and experiments presented complete a first picture on porous111

gravity currents of power-law fluid flowing in different geometries (plane and112
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axisymmetric) in domains exhibiting permeability variations in different di-113

rections (vertical and horizontal), taking into account the influence of the114

channel cross section for plane flow. A general overview and comparison of115

these self-similar solutions seems timely, and is presented in Section 6. Con-116

cluding remarks are formulated in Section 7 together with perspectives for117

future work.118

2. Problem formulation119

Consider a non-Newtonian power-law fluid of density ρ, consistency index120

m, and flow behavior index n, that spreads axisymmetrically over a horizontal121

bed into a porous medium of height h0, initially saturated with a lighter fluid122

of density ρ−∆ρ (see Figure 1). Under the sharp interface and thin current123

approximations, and in the absence of capillary effects (see the recent paper124

by Chiapponi [23] for an indication of the fluid retention in a glass beads125

porous medium), the pressure within the current is hydrostatic, and given126

by p(r, z, t) = p1 + ∆ρ gh(r, t) − ρgz, where r and z represent radial and127

vertical coordinates, p1 = p0 + (ρ−∆ρ)gh0 is a constant, p0 is the constant128

pressure at z = h0, and g is gravity. Under the additional assumption that129

the current thickness is small compared to that of the ambient fluid, the130

velocity of the latter and the vertical velocity in the intruding fluid can131

be neglected, allowing to describe the current behaviour by means of its132

horizontal velocity u(r, t), thickness h(r, t) and maximum extension rN(t) for133

given time t. The expression of the horizontal velocity can be deduced from134

the following general equation, valid for the motion of a power-law fluid in a135

porous medium [24]136

∇p− ρg = −µeff
k
|u|n−1u, (1)

in which p is the pressure, u is the Darcy velocity field, g is the gravity137

vector, k the permeability, and µeff is the effective viscosity (dimensions138

[ML−nTn−2]). The mobility
µeff
k

is given by [20]139

k

µeff
=

1

2Ct

1

m

(
nφ

3n+ 1

)n(
50k

3φ

)(n+1)/2

, (2)

where φ is the porosity and Ct = Ct(n) the tortuosity factor. The modi-140

fied Darcy’s law (1) is based on a capillary bundle model first proposed by141

Bird et al. [25] and later modified to include tortuosity, for which different142
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formulations are available (e.g. Shenoy, 1995 [26]); in the following, the for-143

mulation by Pascal, 1983 [27], Ct = (25/12)(n+1)/2, is adopted. Macroscopic144

laws having the same structure of Eq.(1) were obtained via direct simulation145

at the pore scale by e.g. Balhoff and Thompson [28] and Vakilha and Manzari146

[29]. Experimental verification was provided, among others, by Cristopher147

and Middleman [24] and Yilmaz et al. [30]. Additional references on the use148

of Eq. (1) are reported in [20]. The model is unable to handle viscoelastic149

effects and thixotropy, and needs to be modified to include yield stress or150

Newtonian behaviour at low shear rates.151

Local mass conservation implies that152

1

r

∂

∂r
(ruh) = −φ∂h

∂t
, (3)

and, in addition, two boundary conditions are needed to formulate the prob-153

lem. The first b.c. is the global mass conservation condition154

2πφ

∫ rN (t)

0

rh(r, t)dr = Qtα, (4)

expressing the total volume of the current as a function of time t and param-155

eters Q (dimensions [L3T−α]) and α. This formulation includes the instanta-156

neous injection with constant volume (α = 0), and the continuous injection157

with increasing volume (α > 0).158

The second boundary condition states that the thickness at the current159

front is null, i.e.160

h (rN(t), t) = 0. (5)

Further, the horizontal permeability variation needs to be described. The161

following law of variation is adopted for the medium permeability k [31, 22]162

k(r) = k0

( r

σr∗

)β
, (6)

where k0 is a characteristic permeability, r∗ is a length scale, σ is a coeffi-163

cient introduced for convenience, and β is a constant. The coefficient σ is164

necessary in order to recover the dependency of the permeability only on the165

characteristics of the porous medium, and assumes different values for differ-166

ent length scales r∗ in order to keep the denominator σr∗ independent on the167

fluid properties and on the injection power-law. For β ≶ 0, the permeability168

decreases or increases with the distance from the injection well, respectively;169
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β = 0 represents a medium with constant permeability k0, and the simpler170

model of Di Federico et al. [20] is recovered. For β < 0, the behaviour of171

(6) is singular for r → 0, but this does not affect the overall behaviour of172

the current. Further, we require that β < β0 = 2(n+ 3)/(n+ 1); this upper173

limitation to the increase of the permeability with distance from the origin174

guarantees the validity of our solution from a theoretical point of view, as175

demonstrated in Section 4.1. For a Newtonian fluid (n = 1), β0 = 4 (Ciriello176

et al. [31] found β0 = 3 in plane geometry); for the two limit cases n� 1 and177

n � 1 (very shear-thinning or shear-thickening fluids), β0 ∼ 6 and β0 ∼ 2178

respectively. In a related study on Newtonian gravity currents in Hele-Shaw179

cells with a gap thickness varying in the flow direction, Zheng et al. [22]180

showed that the upper limit for the validity of the lubrication approximation181

is β < 3 in terms of the present paper. They then derived results for β=0.6,182

1.5, and 2.4, a range of values including the actual β value simulated in our183

experiments described in Section 5.184

As far as field values are concerned, realistic exponents for vertical power-185

law variations of properties [32, 33] tend to be much lower than the upper186

limit value β0. More importantly, also horizontal variations of permeability187

are often modelled with negative exponential or decreasing power-law func-188

tions, to represent the steadily decreasing permeability, altered by the drilling189

process, of the aquifer around a large diameter well [34, 35] or of the reservoir190

surrounding a fracture [36]). In both cases, there is a simplification of the191

actual behaviour, where probably a constant and lower value of permeability192

is reached at a certain distance from the well or fracture.193

Substituting Eq.(6) in the one-dimensional version of Eq.(1), and ex-194

pressing the pressure gradient as a function of the unknown free surface as195

∂p/∂r = ∆ρ g(∂h/∂r) yields the following equation of motion196

u(r, z, t) = − (Λ∆ρ g)1/n k
(n+1)/(2n)
0

( r

σr∗

)β(n+1)
2n

∣∣∣∣
∂h

∂r

∣∣∣∣
1/n−1

∂h

∂r
, (7)

where197

Λ = Λ(φ,m, n) =
1

2Ct

(
50

3

)(n+1)/2(
n

3n+ 1

)n
φ(n−1)/2

m
, (8)

which for a Newtonian fluid (n = 1) is the inverse of dynamic viscosity µ .198
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Figure 1: Sketch of an axisymmetric gravity current intruding into a satu-
rated porous medium of thickness h0. The bottom panel illustrates radially
increasing (β > 0), decreasing (β < 0), and homogeneous (β = 0) permeabil-
ities.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The mathematical problem constituted by Equations (7) and (3) with199

boundary conditions (4) and (5) may be rendered non-dimensional upon200

defining time, space, and velocity scales as201

t∗ =

(
Q

φv∗3

)1/(3−α)
, r∗ = v∗t∗, v∗ =

(Λ∆ρ g)1/nk
(1+n)/(2n)
0

φσβ(n+1)/(2n)
, (9)

and dimensionless coordinates as T = t/t∗, R = r/r∗, RN = rN/r
∗, and202

H = h/r∗.203

Note that the time scale t∗ is defined for α 6= 3. The particular case204

α = 3 requires a partially different non-dimensional formulation, which can205

be easily derived following, e.g. [19, 37]. For all other cases, the dimensionless206

problem reads207

1

R

∂

∂R

[
RF1+1H

∣∣∣∣
∂H

∂R

∣∣∣∣
1/n−1

∂H

∂R

]
=
∂H

∂T
, (10)

obtained by combining the dimensionless versions of (7) and (3). In Eq. (10)208

F1 =
β(n+ 1)

2n
(11)

is a factor which reduces to zero in the homogeneous case.209

The global mass balance (4) becomes210

2π

∫ RN

0

RHdR = Tα, (12)

while the condition at the front (5) becomes H(RN) = 0 in dimensionless211

form.212

3. Solution213

It is desirable to obtain a self-similar solution to the system formed by214

Equations (10) and (12) with (5) to capture the long-term evolution of the215

current once the influence of initial and boundary conditions fades. As il-216

lustrated in the Appendix, a first-kind similarity solution for the extension217

and thickness of the current is derived in the form RN(T ) = ηNT
F2 and218

H(R, T ) = ηF5
N T

F3ψ(ζ), where the thickness factor ψ(ζ) is the solution of the219

non linear ordinary differential equation220

9
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(
ζF1+1ψψ′ |ψ′|1/n−1

)′
+ F2ζ

2ψ′ − F3ζψ = 0, (13)

in which the prime indicates d /dζ, and subject to the condition221

ψ(1) = 0, (14)

while the similarity variable at the front of the current ηN is given by222

ηN =

(
2π

∫ 1

0

ζψ(ζ)dζ

)−1/(F5+2)

, (15)

and the factors F2, F3 and F5 are given by (A.2), (A.3), and (A.7), re-223

spectively. For a homogeneous medium (β = 0), results reduce to the sim-224

pler case of Di Federico et al. [20], with F1 = 0, F2 = (α + n)/(n + 3),225

F3 = [α(n+ 1)−2n]/(n+ 3), and F5 = n+ 1. For a Newtonian fluid (n = 1),226

one obtains F1 = β, F2 = (α + 1)/(4− β), F3 = [α(2− β)− 2]/(4− β), and227

F5 = 2 − β. When both simplifications apply, the homogeneous Newtonian228

case studied by Lyle et al. [18] is recovered, and F1 = 0, F2 = (α + 1)/4,229

F3 = (α− 1)/2, and F5 = 2.230

For the instantaneous injection case (α = 0), Equations (13) and (15)231

subject to (14) and ψ′(0) = 0 (the latter condition derives from a no-flux232

boundary condition for r = 0, valid for constant volume) are amenable to233

the closed-form solution234

ψ(ζ) =
F n
20

F5

(
1− ζF5

)
, (16)

235

ηN =

(
πF n

20

F5 + 2

)− 1
F5+2

, (17)

where F20 = F2(α = 0) = 2n/[2(n + 3) − β(n + 1)]. The constraint F5 > 0236

(equivalent to β < 2) applies. When β = 0, Eq. (17) of Di Federico et al.237

[20] is recovered. When n = 1, (16) and (17) transform into238

ψ(ζ) =
1

(4− β)(2− β)

(
1− ζ2−β

)
, (18)

239

ηN =

[
(4− β)2

π

]1/(4−β)
. (19)
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Finally when both n = 1 and β = 0, ψ(ζ) = (1− ζ2) /8 and ηN = 2/π1/4
240

[38].241

For the continuous injection case (α 6= 0) equation (13) needs to be242

integrated numerically with (14) and a second boundary condition is obtained243

expanding the solution in power Frobenius series and balancing the lower244

order terms for ζ → 1. This yields245

ψ′|ζ→1 = −a0bεb−1, a0 = F n
2 , b = 1, (20)

where ε = 1−ζ is a small quantity and F2 is non-negative if β < 2(n+3)/(n+246

1). Integrating (13) with (14) and (20) with a Runge-Kutta scheme yields247

the thickness profile ψ(ζ) and the similarity variable ηN . Sample results are248

shown in Figures 2(a)-(f ) for α = 0, 1, and selected values of n and β. The249

analytical solution for α = 0 and the results obtained by Lyle et al. [18] for250

the Newtonian, homogeneous case are well reproduced. The thickness profile251

ψ(ζ) increases with the injected volume (α) for given fluid and medium (n252

and β), is an increasing function of β, and a decreasing function of n for253

constant volume currents; the dependency on n for constant flux currents254

is more complex. The prefactor ηN (15), whose value influences the current255

thickness via (A.8), is illustrated in Figure 2(g) versus α for different n, β. ηN256

increases with n and decreases with α and β, while its sensitivity is largest for257

smaller α and n and larger β. These dependencies are reversed with respect258

to the thickness profile, so that the dimensionless thickness results from the259

interplay of ψ and ηN .260

261

Other quantities of interest are the aspect ratio of the current (the ratio262

between its average thickness H and radius RN) and the average free-surface263

gradient driving the motion
(
∂H
∂R

)
. These are given respectively by264

H

RN

= ηF5−1
N T F3−F2ψ, (21)

265 (
∂H

∂R

)
= ηF5−1

N T F3−F2

(
dψ

dζ

)
;F3 − F2 =

α[2n− β(n+ 1)]− 6n

2(n+ 3)− β(n+ 1)
, (22)

where ψ and
(
dψ
dζ

)
are respectively the average value of the thickness profile266

and of its derivative over the interval 0-1.267
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Figure 2: (a)-(f ) Thickness profile ψ(ζ). Upper/intermediate/lower rows:
radially increasing (β = 0.5)/uniform (β = 0)/decreasing (β = −0.5)
permeability; left/right columns: constant volume (α = 0)/constant flux
(α = 1); dashed red/solid light blue/dot-dashed green lines: shear-thinning
(n = 0.5)/Newtonian (n = 1)/shear-thickening (n = 1.5) fluids. Pink ovals
in panels (c)-(d) are the results by Lyle et al. [18] for β = 0, n = 1 and
α = 0, 1, respectively;(g) prefactor ηN(α). Dashed/solid/dash-dotted lines:
n = 0.5/1/1.5; thick/intermediate/thin lines: β = 0.5/0/0.5. (Colour online)

12
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Furthermore, the velocity field u is given in dimensionless form U = u/v∗268

by269

U = −φRF1η
F5−1
n

N T
F3−F2

n

∣∣∣∣
∂ψ

∂ζ

∣∣∣∣
1/n−1

∂ψ

∂ζ
, (23)

while for the velocity of advancement of the front of the current, v = d rN(t)/d t,270

the dimensionless expression V = v/v∗ is271

V = ηNF2T
F2−1, withF2 − 1 =

2α− [6− β(n+ 1)]

(n+ 1)(2− β) + 4
. (24)

4. Discussion of results272

4.1. Behaviour of key time exponents273

The power-law time exponents F2, F2 − 1, F3 and F3 − F2 (equations274

(A.2), (24), (A.3), and (22)), of the radius, velocity, thickness and aspect275

ratio of the gravity current are the key factors to understand the evolution of276

the current over time. In the present section, we explore their dependency on277

model parameters α (the time rate of change of the fluid volume), n (the flow278

behaviour index), and β (the rate of change of the permeability along the279

direction of propagation) by evaluating their sign and their partial derivatives280

with respect to model parameters. The results obtained for F2 (together with281

F2−1), F3, and F3−F2 are listed in Tables 1, 2, and 3, respectively. Various282

limit values of α, and, in some instances, of other parameters, emerge; each283

limit value is listed below the respective condition on F2, F3, F3−F2 or their284

partial derivative. These threshold values of model parameters discriminate285

between a positive, null, or negative value of F2, F3, F3 − F2 and of their286

partial derivative with respect to α, n, and β.287

Inspection of Table 1 reveals that for a physically meaningful solution, the288

permeability must decrease over space, or increase not too sharply (β < βe);289

for a Newtonian fluid (n = 1), βe = 4. The current front accelerates290

(F2 − 1 > 0) for any α under a sharp increase in permeability (β > βa),291

or beyond a threshold value αa of α for permeability decreasing or increasing292

moderately over space (β < βa); otherwise, the current is decelerated. For a293

Newtonian fluid (n = 1), the threshold values reduce to βa = 3, αa = 3− β;294

for a homogeneous medium (β = 0) and any fluid, αa = 3. Moreover, F2295

increases with α for any combination of β, n, as a larger fluid injection rate296

implies an increase in the current velocity regardless of the permeability vari-297

ation and fluid nature. Similarly, F2 increases with β for any combination of298
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Table 1: Dependence of the propagation rate F2 on model parameters for
horizontally varying permeability. For each row, limits on model parameters
necessary to achieve the condition itemized in column 1 are listed in column
2; when appropriate, the value(s) of specific threshold parameters is/are also
listed in the same row. Row 1: Conditions for F2 > 0. Row 2: conditions for
decelerated/constant speed/accelerated currents. Row 3: condition for F2

increasing with α. Row 4: conditions for F2 decreasing/constant/increasing
with n. Row 5: conditions for F2 increasing with β.

(1)





F2 > 0 β < βe

βe
n+ 3

n+ 1

(2)





F2 − 1 < 0 β < βa ∧ α < αa

F2 − 1 = 0 β < βa ∧ α = αa

F2 − 1 > 0 (β < βa ∧ α > αa) ∨ (β = βa ∧ α > 0)∨
(β > βa ∧ ∀α)

βa
6

n+ 1

αa(β < βa)
6− β(n+ 1)

2

(3)

{
∂F2

∂α
> 0 ∀n, β

(4)





∂F2

∂n
< 0 β < βen ∧ α > αen

∂F2

∂n
= 0 β < βen ∧ α = αen

∂F2

∂n
> 0 (β < βen ∧ α < αen) ∨ (β ≥ βen ∧ ∀α)

βen 2

αen(β < βen)
6− β
2− β

(5)

{
∂F2

∂β
> 0 ∀α, n

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Dependence of the thickness time exponent F3 on model param-
eters for horizontally varying permeability. For each row, limits on model
parameters necessary to achieve the condition itemized in column 1 are
listed in column 2; when appropriate, the value(s) of specific threshold pa-
rameters is/are also listed in the same row. Row 1: conditions for thick-
ness decreasing/constant/increasing with time. Row 2: condition for F3

decreasing/constant/increasing with α. Row 3: conditions for F3 decreas-
ing/constant/increasing with n. Row 4: conditions for F3 decreasing with
β.

(1)





F3 < 0 (β < βt ∧ α < αt) ∨ (β ≥ βt ∧ ∀α)

F3 = 0 β < βt ∧ α = αt

F3 > 0 β < βt ∧ α > αt

βt 2

αt(β < βt)
4n

(n+ 1)(2− β)

(2)





∂F3

∂α
Q 0 β R βt

βtα 2

(3)





∂F3

∂n
< 0 (β < βtn ∧ α < αtn) ∨ (β ≥ βtn ∧ ∀α)

∂F3

∂n
= 0 β < βtn ∧ α = αtn

∂F3

∂n
> 0 β < βtn ∧ α > αtn

βtn 2

αtn(β < βtn)
6− β
2− β

(4)

{
∂F3

∂β
< 0 ∀α, n
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Table 3: Dependence of the aspect ratio time exponent F3−F2 on model pa-
rameters for horizontally varying permeability. For each row, limits on model
parameters necessary to achieve the condition itemized in column 1 are listed
in column 2; when appropriate, the value(s) of specific threshold parameters
is/are also listed in the same row. Row 1: conditions for aspect ratio increas-
ing/constant/decreasing with time. Row 2: condition for F3 − F2 increasing
with α. Row 3: conditions for F3 − F2 decreasing/constant/increasing with
n. Row 4: conditions for F3 − F2 decreasing/constant/increasing with β.

(1)





F3 − F2 < 0 (β < βg ∧ α < αg) ∨ (β ≥ βg ∧ ∀α)

F3 − F2 = 0 β < βg ∧ α = αg

F3 − F2 > 0 β < βg ∧ α > αg

βg
2n

n+ 1

αg(β < βg)
6n

2n− β(n+ 1)

(2)





∂(F3 − F2)

∂α
Q 0 β R βgα

βgα
2n

n+ 1

(3)





∂(F3 − F2)

∂n
< 0 (β < βgn ∧ α < αgn) ∨ (β ≥ βgn ∧ ∀α)

∂(F3 − F2)

∂n
= 0 β < βgn ∧ α = αgn

∂(F3 − F2)

∂n
> 0 β < βgn ∧ α > αgn

βgn 2

αgn(β < βgn)
6− β
2− β

(4)

{
∂(F3 − F2)

∂β
< 0 ∀α, n
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α, n, as an increase/less marked decrease of the permeability favours the cur-299

rent advancement. The functional dependency of F2 on n is more complex, as300

the velocity of the current increases with n for any α under a sharp increase in301

permeability (β > βen), or below a threshold value αen of α for permeability302

decreasing or increasing moderately over space (β < βen). The current veloc-303

ity decreases with n when combining a large injection rate (α > αen) with a304

permeability decreasing or increasing moderately over space (β < βen). For305

a Newtonian fluid (n = 1), the threshold value of α reduces to αen = 3.306

Inspection of Table 2 shows that the thickness of the current increases307

with time at a given point (F3 > 0) only when a large injection rate (α > αt)308

is combined with permeability decreasing or increasing moderately over space309

(β < βt); for decreasing permeability, the current encounters more resistance310

as it advances, while for a moderately increasing permeability, the decrease311

in medium resistance is more than compensated by the volume increase of312

the current. In all other cases, the thickness decreases over time, and does so313

for any α when the permeability increase is marked. For a Newtonian fluid314

(n = 1), the threshold value of α reduces to αt = 2/(2−β); for a homogeneous315

medium (β = 0) and any fluid, αt = 2n/(n + 1). Furthermore, it is noted316

that F3 decreases or increases with α depending whether a threshold value317

αt is exceeded or not, or, equivalently, depending whether the increase in the318

volume of the current prevails over the permeability increase along the flow319

direction. The functional dependency of F3 on n is the opposite of F2 and320

the same threshold values due to mass balance. Finally, F3 decreases with321

β for any combination of α, n, as an increase/less marked decrease of the322

permeability increases the radius of the current, thus implying a decrease in323

thickness due to mass balance. For the same reasons, the dependence of F3324

upon n is the opposite of F2, with the threshold value αtn being equal to αen.325

Inspection of Table 3 indicates that the aspect ratio/average spatial gra-326

dient of the current increases with time (F3 − F2 > 0) only when a large327

injection rate (α > αg) is combined with permeability decreasing or increas-328

ing moderately over space (β < βg); this behaviour can be understood noting329

that the average spatial gradient is proportional to the resistance encountered330

by the current in its advancement. Otherwise, the aspect ratio decreases with331

time, and the current grows progressively more elongated. For a Newtonian332

fluid (n = 1), the threshold values reduce to αg = 2/(2 − β), βg = 1; for a333

homogeneous medium (β = 0) and any fluid, αg = 3. The dependence of334

F3 − F2 on α is governed by a threshold value βgα; for β > βgα, F3 − F2 de-335

creases with increasing α; the reverse is true for β < βgα. This is so because336
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unless the permeability increase is marked, the aspect ratio of the current337

increases with the injection rate. The threshold is β > βgα = 1 for a Newto-338

nian fluid. The behaviour of F3 − F2 as a function of n is analogous to F2,339

with the same threshold values. Finally, F3 − F2 decreases with β for any340

combination of α, n, as a more permeable medium implies less resistance to341

the flow and a reduced average spatial gradient.342

To visually illustrate the behaviour of the key exponent, Figures 3(a)-(f )343

depict how F2, F3 and F3 − F2 depend on β for fixed n = 0.5 and on n for344

fixed β = −0.5; results for various values of α, including the critical ones,345

are shown. The two reference values (n = 0.5 and β = −0.5) are selected for346

illustrative purposes and represent common cases in natural porous media,347

i.e. a shear-thinning fluid and a permeability decreasing with distance from348

the source.349

350

A comparison of the threshold values of α and β reveals that: i) for a351

homogeneous medium (β = 0), all threshold values of α coalesce into 3,352

except for αt; ii) for a Newtonian fluid (n = 1), the threshold values of α are353

β-dependent; iii) for Newtonian flow in a homogeneous medium, αt = 1. A354

plot of the limit αg is shown in Figure 4 for n = 0.5, 1, 1.5. The limiting value355

of α increases with β; the increase is more rapid for β > 0. The influence356

of n on αg is mixed, in that this limit value increases with n for β < 0 and357

decreases with n for β > 0. For a homogeneous medium, the limit αg is358

independent of the behaviour index n.359

4.2. Limits of validity360

Limitations on the parameters emerge when considering the validity of361

model assumptions. At any time, conditions for the radius of the current362

to increase with time must hold (F2 > 0), as noted in the previous sub-363

section. Furthermore, for T � 1 the thin current approximation requires364

the intruding current to be thin compared to both its height (F3 − F2 < 0)365

and the characteristic height h0 of the porous medium (F3 < 0). Otherwise,366

at large times i) the current thickness would exceed a reasonable portion of367

the porous domain total height, rendering invalid the assumption of immo-368

bile ambient fluid; ii) the aspect ratio of the current would increase without369

bounds, contrary to the assumption of negligible vertical velocities. Combin-370

ing these limitations, the parameters domain satisfying all model assumptions371

asymptotically (the most restrictive condition) is obtained. An example is372

illustrated in Figure 5, where the two limits βe and βg are depicted, the first373
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Figure 3: (a)-(f ) The value of the time exponents F2, F3 and F3 − F2 for a
current with length ∝ T F2 , height ∝ T F3 , mean free-surface gradient/aspect
ratio ∝ T F3−F2, and volume ∝ Tα in a porous medium with permeability
varying horizontally as rβ. Results are shown for F2, F3 and F3 − F2 in the
upper, intermediate and lower rows, respectively, as a function of β for n =
0.5 and as a function of n for β = −0.5 (left and right columns, respectively),
and for different values of α. αen = αtn = αgn = (6− β)/(2− β)
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Figure 4: Limiting values of α to ensure an asymptotic decrease of the average
steepness of the current, α < αg and β < βg.

to ensure F2 > 0, the second to ensure F3 − F2 < 0; in all cases of practical374

interest (n < 3) the latter limitation is more stringent than the former. It375

is seen that a too sharp increase in the permeability along the flow direction376

renders the current steeper with time; the limit β value is 0.67 for n = 0.5377

and 1 for n = 1.378

4.3. Limitations of the model for in-situ applications379

As to in-situ applications, there is still room to improve the connection380

between the present model and the field conditions. The model is based on381

a monotonic permeability variation from the well to infinity (porosity vari-382

ations can be easily added), and is not presently able to handle composite383

and more complex spatial variations. When the permeability variation is due384

to fracturing/rearrangement of grains during drilling or due to sealing, or to385

mud injection in the medium, a cutoff is expected at a certain distance from386

the well. In addition, in the latter cases the most relevant variations of per-387

meability and porosity happen at a short distance from the well, where the388

model itself is questionable due to several effects earlier highlighted. How-389

ever, in other cases the permeability reduction is more gradual, for example390

when it is associated to clogging of pore space resulting from deposition of391

fine material or escape of dissolved gases in water aquifers. Nevertheless392

the results are promising and indicate that further steps and advancements393

can be based on the present approach, which can function as a benchmark394

solution for more complex situations; more on this in the Conclusions.395
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Figure 5: Limiting values of β to ensure a positive time advancing of the
front of the current, β < βe ≡ (n+ 3)/(n+ 1), and an asymptotic decreasing
average steepness of the current, β < βg ≡ 2n/(n+ 1).

5. Laboratory experiments396

5.1. Experimental setup397

A series of experiments were conducted at the Hydraulic Laboratory of398

the University of Parma, to test the validity of the theoretical solution.399

A 90◦ sector glass tank 25 cm × 25 cm × 25 cm in size was filled with400

transparent glass ballotini with nominal diameters of d = 1.0, 2.0, 3.0, 4.0 and401

5.0 mm to reproduce a porous medium. The continuous horizontal gradient of402

the permeability required by Eq. (6) was approximately reproduced by using403

a plastic framework that allowed to create separate neighbouring sectors,404

each filled with beads of uniform diameter and having uniform permeability405

given by the Kozeny-Carman equation. The thickness of each sector was406

determined according to the procedure outlined in Appendix B of [15], which407

provides the connection between the geometry of the stepwise distribution408

of diameters and the the theoretical parameters k0 and β of the continuous409

distribution (6).410

The plastic framework shown in Figure 6 consists of thin plastic sheets411

(0.5 mm) curved in order to reproduce four quarters of cylinder with radius412

equal to 3.2 cm, 6 cm, 9 cm and 12.2 cm, with two radial diaphragms (plane413

plastic sheets). After filling the sectors with the beads, the framework is414

gently removed by lifting it. Figure 7 shows the radial distribution of the415

diameters and the permeability for β = 1.65. The diameters adopted for the416
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Figure 6: Plastic frame used to fill the tank with ballotini of different diam-
eter in the radial direction and with axisymmetric configuration.

beads are in the upper range for natural porous media; this choice mainly417

reflects commercial availability and ease of sieving. Nevertheless the solution418

is applicable to porous media with grains of any size as long as the underlying419

assumptions are respected. The horizontality of the bottom of the tank was420

checked by an electronic level. The intruding current was a shear-thinning421

fluid, made of softened water (water without cations like Ca++ and Mg++),422

glycerine and Xanthan Gum, mixed in two different proportions: (i) 40%423

(vol) of water, 60% (vol) of glycerine and 0.10% (weight) of Xanthan Gum,424

(ii) 95% (vol) of water, 5% (vol) of glycerine and 0.15% (weight) of Xanthan425

Gum. Ink was added to the final mixture for an easy visualization and426

detection of the interface. We used a commercial Xanthan Gum for food use427

from a local supplier, and glycerine was added to increase the consistency428

index without adding too much Xanthan Gum. The mixing was performed429

in a low speed stirrer, by adding small quantities of Xanthan Gum to pure430

water and then adding glycerine. After mixing, lumps were removed with a431
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Figure 7: Radial distribution of the diameter of the ballotini (continuous
thick curve) and of the permeability (dashed thick curve) for β = 1.65 and
k0 = 1.986× 10−8 m2. The curves are the interpolation of the step functions
representing diameter and permeability (thin curves), since the diameter of
the ballotini is constant within each vertical sector.

small colander and the mixture was left at rest for several hours. The overall432

result is that mixtures with the same ingredients, but prepared in different433

days, show different rheological parameters. The rheological parameters (flow434

behaviour index n and consistency index m) were measured by a strain-435

controlled rheometer (Dynamic Shear Rheometer, Anton Paar Physica MCR436

101), with parallel plates roughened by sandpaper P-60 glued onto both437

smooth surfaces. The distance between the plates was 1 mm and the testing438

temperature of the rheometer was T = 25◦C, equal to the one measured in439

the laboratory during the experiments, with expected fluctuations of ±1◦C.440

The range of shear rate during measurements was chosen in order to overlap441

the range of shear rate expected during flow in the porous medium, following442

the criterion reported in [39]. According to this criterion, the effective shear443

rate should be evaluated at the pore scale, by using, e.g., the expression given444

by Savins (1969) [40]445

γ̇ =
u
√

2× 10−4√
kφc′

, (25)

with u the Darcian velocity and c′ = 2.1− 2.4 a coefficient related to tortu-446
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Figure 8: Stress-strain (triangles) and apparent viscosity (stars) measure-
ments a) for the fluid used in Exp. A4, and b) for the fluid used in Exp.
B2–B4. The dashed lines are the 95% confidence limits of the interpolating
power–law functions τ = 0.82 γ̇0.43 and τ = 0.62 γ̇0.57, respectively. One point
in three is shown for an easy visualization.

osity. The result is a low effective shear rate in most part of the body of the447

current (see Longo et al., 2013 [39], Figure 5, for an estimation of the shear448

rate in experiments similar to the present experiments). Indeed in some part449

of the current, like the injection area, the shear rate is much larger than in450

the body of the current. However, it has been experimentally demonstrated451

that the evolution of a viscous-buoyancy gravity current is not influenced by452

the local disturbances near the inlet section, see, e.g., Lyle et al., 2005 [18].453

Figure 8 shows the stress-strain measurements for two fluids adopted in the454

experiments, with the interpolating power–law function. We bear in mind455

that the power–law approximation hides a much more complex rheological456

behaviour of the mixture, see, e.g., [41, 42], which is also influenced by ions457

and chemicals. Hence, the power–law is adopted as a pragmatic working tool458

for a simple and synthetic description of the local rheology of the fluid.459

The intruding fluid was injected with a syringe pump into the tank through460

a quarter-cylinder volume similar to a well having radius of 0.8 cm, obtained461

with a brass net, which was located in one corner of the tank. This configu-462

ration reproduces an axisymmetric spreading due to the symmetry along the463

the vertical axis and with negligible influence of the wall boundary layers.464
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Figure 9: Typical images of the side- (a) and bottom-view (b) for one of the
experiments. The radial increment of the diameter of the ballotini can be
observed in both images.

The syringe pump was controlled by an analog electric signal to generate a465

constant (α = 1) or waxing (α = 1.5, 2.0) influx rate. During the injection,466

the lateral current profile was recorded by a high-resolution video-camera467

(Canon Legria HF 20, 1920×1080 pixels) working at 25 frames per second,468

while the bottom view was reflected by a mirror and captured by a photo-469

camera shooting every 2 seconds. The videos and images were post-processed470

using a software to transform the pixel positions into metric coordinates. A471

grid stuck on the wall and on the bottom of the tank was used to reconstruct472

the correspondence between image and physical plane surfaces, with the use473

of interpolating polynomials functions. The position of the front of the cur-474

rent was detected by selecting the nose on the image and then converting475

the pixels coordinates into metric coordinates, with an overall accuracy of476

±1 mm.477

Figure 9 shows two typical images of the side- and bottom-view during478

one of the experiments.479

5.2. Experimental results and discussion480

A total of 10 experiments were performed, with the experimental param-481

eters summarized in Table 4. The horizontal permeability is controlled by482

the value of β, which was kept constant for all data sets, while the injec-483

tion rate (α), the fluid rheology (m and n), and the fluid density (ρ) varied484

among the tests. Figure 10 depicts the non dimensional front position RN of485
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the current for the various tests, compared with the theoretical prediction.486

For most tests, with the exception of A1 and A4, experimental results in-487

dicate a front position below the theoretical counterpart before reaching it488

asymptotically in all cases. The good agreement between theoretical and ex-489

perimental data over time (asymptotically within 5%) is due to the balance490

of buoyancy and viscous forces, while the disturbing effects due to injection,491

with significant vertical velocity, influence the position of the front only at492

the beginning of motion. The comparison between tests A4 and B3, which493

only differ in the type of fluid (having respectively n ≈ 0.43 and n ≈ 0.57),494

leads to the conclusion that the more shear-thinning fluid (A4) best fits the495

theoretical model, and this result holds true since the beginning of the test.496

Furthermore, shear-thinning fluids advance slower with decreasing values of497

n, as shown upon comparing tests A5 and B4 for α ≥2.498

The results of tests A2 and A3, characterized by different values of Q, i.e.499

2.4 and 4.0 cm3 s−1, clearly show the same behaviour, demonstrating that,500

all other parameters being equal, Q is not relevant in the evaluation of the501

dimensionless front position RN . Indeed, a little variation of density, e.g.502

between tests B2 and B5, proves that the fluid density ρ significantly affects503

the dimensionless position of the front. The comparison between the actual504

position of the front end among different experiments is best performed in505

dimensional form, as the time and velocity scales are function of experimental506

parameters, which differ among the tests conducted.507

Figure 11ab shows the shape of the current at different times for two ex-508

periments with constant and waxing influx rate, respectively. The agreement509

between experiments and model is fairly good, in particular at late times.510

Near the origin the experimental shape of the current is below the theoreti-511

cal profile, even though this effect does not affect significantly the front end512

position and the shape of the main body.513

6. Overview on non-Newtonian gravity currents in porous media514

The present section is devoted to an overview of self-similar solutions gov-515

erning the propagation of non-Newtonian currents of variable volume with516

power-law rheology in porous media. The overview is performed by compar-517

ing the key parameters governing the propagation, i.e. F2, F3 and F3 − F2,518

equal to the time exponents of the extension, thickness, and slope of the519

current (derivation of the exponent of the velocity of the front end of the520

current, F2 − 1, is trivial) for a variety of combinations of geometries and521
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Exp. Q α m n ρ β
(cm3 s−α) (Pa sn) (g cm−3)

A1 1.20 1.01 0.071± 0.004 1.00± 0.01 1.221± 0.001 1.65
A2 2.40 1.02 0.80± 0.02 0.45± 0.02 1.176 1.65
A3 4.00 1.00 0.78± 0.02 0.48± 0.02 1.176 1.65
A4 0.64 1.53 0.82± 0.02 0.43± 0.02 1.176 1.65
A5 0.029 2.05 1.02± 0.02 0.23± 0.01 1.176 1.65
B1 2.40 1.01 1.21± 0.02 0.80± 0.03 1.086 1.65
B2 3.08 1.01 0.62± 0.01 0.57± 0.02 1.086 1.65
B3 0.64 1.53 0.62 0.57 1.086 1.65
B4 0.030 2.03 0.62 0.57 1.086 1.65
B5 4.01 1.00 0.64± 0.01 0.56± 0.02 1.088 1.65

Table 4: Experimental parameters. Q is a coefficient of the time varying
volume Qtα, α is the time exponent (α = 1 means constant influx rate), m
and n are the consistency and the fluid behaviour index, respectively, ρ is the
mass density of the fluid and β is a parameter controlling the radial variation
of the permeability. The uncertainty listed for some of the values refers to
one standard deviation.
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Figure 10: The non dimensional front position of the current. The symbols
represent the experiments, the solid lines the theoretical data. The parame-
ters of the experiments are listed in Table 4.
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Figure 11: Theoretical (dashed line) versus experimental current shape for
a) Exp. A2, constant influx rate (α = 1), and b) Exp. A5, waxing influx
rate (α = 2.05).
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Plane unbounded P lane channelized P lane, vertical heterogeneity P lane, horizontal heterogeneity
[19] [43] [16] [16]

F2
α + n

n+ 2

ακ+ n(κ+ 1)

n+ 1 + κ(n+ 2)

α[(n+ 1)(ω − 1) + 2] + 2n

2(n+ 2) + (n+ 1)(ω − 1)

2(α + n)

2(n+ 2)− β(n+ 1)

F3
α(n+ 1)− n

n+ 2

κ[α(n+ 1)− n]

n+ 1 + κ(n+ 2)

2[α(n+ 1)− n]

2(n+ 2) + (n+ 1)(ω − 1)

α(n+ 1)(2− β)− 2n

2(n+ 2)− β(n+ 1)

F3 − F2
n(α− 2)

n+ 2

n[ακ− (2κ+ 1)]

n+ 1 + κ(n+ 2)

α[2n− (n+ 1)(ω − 1)]− 4n

2(n+ 2) + (n+ 1)(ω + 1)

α[2n− β(n+ 1)]− 4n

2(n+ 2)− β(n+ 1)

Table 5: Formulation of parameters F2, F3 and F3−F2 in plane geometry for
the following cases: i) plane unbounded; ii) channelized plane flow of param-
eter κ, the width b of the cross-section is related to its height h by b ∝ yκ,
κ < 1/ = / > 1 corresponds to narrow/triangular/wide cross-sections, with
κ → ∞ indicating the unbounded case; iii) vertical heterogeneity with per-
meability varying along y as k ∝ yω−1, ω = 1 corresponds to the homoge-
neous case; iv) horizontal heterogeneity with permeability varying along x as
k ∝ xβ, β = 0 corresponds to the homogeneous case.

laws of variation of properties. For the case covered in the present paper (ra-522

dial propagation in an horizontally heterogeneous media) F2,F3 and F3 − F2523

are reported in Equations (A.2), (A.3), and (22), respectively. Results for524

other geometries and/or laws of variation were derived in previous papers525

[19, 20, 15, 43, 16], always with the parameter α equal to the time exponent526

of the volume of the current. Table 5 covers results for plane geometry: the527

base unbounded case [19] is compared to the channelized case of parameter528

κ [43], to vertical heterogeneity of parameter ω [16], and to horizontal het-529

erogeneity of parameter β [16]; see the Table caption for additional details.530

Table 6 lists results for radial geometry: the base case [20] is compared to531

vertical heterogeneity of parameter ω [15], and to horizontal heterogeneity of532

parameter β (the present paper); again see caption for details.533

Figure 12 depicts the behaviour of each key parameter for the homoge-534

neous case as a function of geometry, n, and α. For all cases analysed, the535

radial geometry implies lower values of all key parameters, with the excep-536

tion of a continuous injection of very shear-thinning fluids in narrow cross537

sections. For an instantaneous fluid release (α= 0), an increase of the rhe-538

ological parameter n in radial geometry leads to F2 values lower than other539

geometries, due to mass balance considerations. Among the plane cases, F2540

tends to decrease as the shape factor κ increases, tending to the unbounded541
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Figure 12: Parameters F2 (upper row), F3 (intermediate row) and F3 − F2

(lower row) as a function of n, for instantaneous (α = 0, left column) and
continuous injection (α = 1, right column), with homogeneous permeability
(ω = 1, β = 0), for radial, plane, and plane channelized geometry of various
parameters κ.
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Radial Radial, vertical heterogeneity Radial, horizontal heterogeneity
[20] [15] [pp]

F2
α + n

n+ 3

α[(n+ 1)(ω − 1) + 2] + 2n

2(n+ 3) + 2(n+ 1)(ω − 1)

2(α + n)

2(n+ 3)− β(n+ 1)

F3
α(n+ 1)− 2n

n+ 3

α(n+ 1)− 2n

2(n+ 3) + 2(n+ 1)(ω − 1)

α(n+ 1)(2− β)− 4n

2(n+ 3)− β(n+ 1)

F3 − F2
n(α− 3)

n+ 3

α[2n− (n+ 1)(ω − 1)]− 6n

2(n+ 3) + 2(n+ 1)(ω − 1)

α[2n− β(n+ 1)]− 6n

2(n+ 3)− β(n+ 1)

Table 6: Formulation of parameters F2, F3 and F3−F2 in radial geometry for
the following cases: i) pure radial; ii) vertical heterogeneity with permeability
varying along y as k ∝ yω−1, ω = 1 corresponds to the homogeneous case; iii)
horizontal heterogeneity with permeability varying along r as k ∝ rβ, β = 0
corresponds to the homogeneous case. pp indicates the present paper.

case (κ →∞), as the volume of the current remains constant and the front542

of fluid is forced to move further for lower κ. In constant-flux regime (α= 1),543

radial geometry and n > 0.5, F2 behaves as in the constant-volume regime,544

while for plane geometries it shows an opposite behaviour, i.e. F2 increases545

with higher values of κ. In constant-volume regime (α= 0), the parameter F3546

is negative for all the analysed geometries. In general, this exponent tends547

to decrease when moving to plane unbounded geometry. In constant flux548

regime, F3 is negative only for radial geometry and dilatant fluids (n > 1),549

whilst in plane geometries F3 tends to increase with the shape factor κ, as550

does F2.551

For all geometries, the parameter F3 − F2 is always negative for α ≤ 1,552

because of the higher limit of validity for shear thinning fluids. The parameter553

reaches lower values in constant-volume regime (α= 0), and is larger for plane554

than for radial geometry. The influence of κ on results is more limited as κ555

increases. Figure 13 illustrates the trend of parameters F2,F3 and F3 − F2,556

considering vertical permeability variations in plane and radial geometry.557

The homogeneous case with ω= 1 [15, 16], is depicted in Figure 12. In both558

plane and radial geometry, for an instantaneous fluid release (α= 0) and ω <559

1, F2 is higher than the homogeneous case depicted in Figure 12, whilst it is560

lower if ω > 1. This trend changes for a constant-flux regime (α= 1). For561

ω < 1, and plane geometry, F2 is lower than the homogeneous case, and it562

becomes higher if ω > 1. In the radial case, for ω < 1, F2 is lower than563
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Figure 13: Permeability varying in the vertical direction. Parameters F2

(upper row), F3 (intermediate row) and F3− F2 (lower row) as a function of
n, for permeability decreasing (ω = 0.75, left column) and increasing along
the vertical (ω = 1.25, right column), radial/plane geometry (orange/green
lines) and instantaneous (α = 0, solid line)/continuous (α = 1, dashed line)
injection.

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the homogeneous case, but only for a shear thinning fluid (n < 1), while it564

becomes higher for a dilatant fluid (n > 1). On the contrary, if ω > 1, F2565

shows an opposite behaviour.566

Concerning the parameter F3, in constant-volume regime (α <= 0) and567

both geometries, this parameter is lower than the homogeneous case for ω <568

1, while it becomes higher if ω > 1. For continuous injection (α= 1), in569

plane unbounded geometry, F3 is higher than the homogeneous case if ω <570

1, and it reverses its behaviour with ω > 1. In radial case, for ω < 1, F3 is571

higher than homogeneous case, only for a shear thinning fluid (n < 1), while572

it becomes lower for a dilatant fluid (n >1). On the contrary, if ω > 1, F3573

has an opposite trend.574

For an instantaneous release (α= 0), in both geometries, F3−F2 is lower575

than the homogeneous case for ω < 1, while it reverses its behaviour if ω >576

1. For continuous injection (α= 1), in plane unbounded geometry, F3 − F2577

is higher than the homogeneous case if ω < 1, reversing for ω > 1; in radial578

geometry, instead, the behaviour is similar to F3. For both geometries, inde-579

pendently on vertical permeability variations, the deviation between homo-580

geneous (Figure 12) and heterogeneous values (Figure 13) tends to increase581

if n increases for α= 0, and it decreases for constant injections only in plane582

geometry. Figure 14 depicts the behaviour of parameters F2,F3 and F3−F2,583

considering horizontal permeability variations in plane and radial geometry;584

the homogeneous case (β= 0) is depicted in Figure 12 [16]. In both geometries585

and regimes, i.e. constant-volume and constant-flux, for β < 0, F2 is lower586

than homogeneous case, while its behaviour is reversed if β > 0. For β <587

0, the parameter F3 is higher than the homogeneous case for all geometries588

and regimes, whilst it becomes lower if β > 0. Finally, F3 − F2 follows the589

same trend of F3. For both releases, geometries, and horizontal permeability590

variations, the deviation between homogeneous and heterogeneous case tends591

to increase for higher n values.592
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Figure 14: Permeability varying in the horizontal direction. Parameters F2

(upper row), F3 (intermediate row) and F3− F2 (lower row) as a function of
n, for permeability decreasing (β = −0.25, left column) and increasing along
the horizontal (β = 0.25, right column), radial/plane geometry (orange/green
lines) and instantaneous (α = 0, solid line)/continuous (α = 1, dashed line)
injection.
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7. Conclusions593

We have presented a novel model describing the propagation of axisym-594

metric power-law GCs in porous media with an horizontal permeability vari-595

ation. The problem is amenable to a self-similar solution of the first kind596

yielding the position of the front end and the thickness of the current as597

functions of dimensionless parameters describing the volume of the GC (α),598

the fluid rheological behaviour (n), and the power-law permeability varia-599

tion along the horizontal coordinate (β); depending on the value of β, the600

permeability increases or decreases with the distance from the origin; in the601

latter case, this conceptual simplification captures the essential behaviour of602

the radial variation of permeability around a well, with the additional con-603

venience of an easy-to-implement self-similar solution, which can be used as604

a benchmark for numerical modelling. The special case of constant volume605

currents has a closed-form solution. The behaviour of key time exponents606

governing the rate of propagation, thickness and aspect ratio of the current607

was discussed in detail, yielding a number of threshold value of model param-608

eters α and β which discriminate between opposite trends in the behaviour of609

the current over time and govern the sensitivity to model parameters them-610

selves. In turn, these parameters allow to discriminate the conditions for the611

validity of our solution at large times.612

A specific laboratory set-up was devised to directly reproduce horizontal613

permeability variations, overcoming the difficulties inherent in the horizontal614

juxtaposition of layers of glass beads of different diameter. Theoretical results615

were confirmed by our experiments, with a fairly good agreement except for616

the early-time regime. It is confirmed that also in presence of a deterministic617

spatial variation of permeability, disturbances or anomalies near the injection618

line and near the front of the current, do not affect the current evolution in619

the intermediate asymptotic regime. Also the discretization of the porous620

medium to mimic a continuous variation of permeability and capillary effects621

do not significantly affect the behaviour of the GCs, at least for constant622

influx rate condition (α = 1). More important disturbances are expected for623

constant volume experiments (α = 0) and, in general, for waning GCs.624

In real applications, model parameters are obtained as follows: i) rhe-625

ological fluid parameters n and m need to be determined experimentally,626

bearing in mind that the power-law model is an approximation of the real627

fluid behaviour; ii) the strength of the injection α depends on its type, which628

is usually known, and is equal to 0 or 1 for instantaneous or continuous629
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injection; iii) the parameter β reflecting the intensity of the permeability630

variation needs to be determined experimentally on the basis of available631

measurements at different locations. Note that two measurements k1 and k2632

at two locations r1 and r2 allow the determination of β by means of Eq. (6).633

The theory and experiments herein presented complete a first picture on634

porous gravity currents of power-law fluid flowing in plane and axisymmetric635

geometry. The reference solutions are derived by Di Federico et al. [19]636

for plane and by Di Federico et al. [20] for radial flow. The influence of637

channel shape on plane flow is covered in Longo et al. [43]. Heterogeneous,638

deterministic variations of properties are examined by Ciriello et al. [16]639

considering vertical and horizontal grading in 2-D flows, and by Di Federico640

et al. [15] considering vertical grading in radial flow; horizontal grading is641

covered in the present paper. An overview of the key time exponents for642

these cases revealed the combination of geometries and model parameters643

yielding the fastest/lowest currents, and those having the fastest decrease of644

thickness and aspect ratio over time.645

Our study has several connections to geological flows and industrial flows,646

including flows during fracking procedures, shale gas recovery, drilling wells,647

and may be relevant for CO2 sequestration, as solvents which proved effective648

in CO2 capture exhibit shear-rate dependent viscosities [44]. In all these649

applications, fluids exhibiting non–Newtonian effects (often approximated650

by power-law fluids) are used, almost always in heterogeneous porous media.651

At the pore-scale, it is worth noting that the effect of heterogeneity prevails652

over the non linearity due to rheology in shaping the flow pattern [45], with a653

relatively minor influence of the specific rheological equation [46]; it remains654

an open question whether this is true at Darcy’s scale.655

In sum, several avenues of investigation remain open in the area of non–656

Newtonian GCs, e.g.657

• inclusion of fluid drainage/injection at the bottom of the current, either658

distributed or concentrated in single/multiple fissure(s);659

• inclusion of stratification effects in the advancing current;660

• consideration of more complex permeability variations, including cut-661

offs and discontinuities in the medium properties (e.g. inclusions);662

• adoption of more realistic rheological models to describe complex fluids,663

such as Carreau or truncated power-law;664
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• stochastic modelling of heterogeneity.665

We are investigating these fascinating topics and hope to report on them666

in the near future.667
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Appendix A. Self-similar solution670

Inspection of Eq. (10) yields the following time scalings for the length R671

and thickness H of the current672

R ∼ T F2 , H ∼ T F3 (A.1)

where673

F2 =
2(α + n)

2(n+ 3)− β(n+ 1)
, (A.2)

674

F3 =
α(n+ 1)(2− β)− 4n

2(n+ 3)− β(n+ 1)
. (A.3)

This suggests the adoption of the similarity variable675

η = R/T F2 , (A.4)

which in turn leads to the expression of the position of the front and of the676

thickness respectively as677

RN(T ) = ηNT
F2 , (A.5)

678

H(R, T ) = T F3f(η), (A.6)

where ηN is the η value at the front R = RN(T ). The function f(η) may be679

recast as f(η) = ηF5
N ψ(ζ) via the introduction of the normalized similarity680

variable ζ = η/ηN , where681

F5 =
(n+ 1)(2− β)

2
, (A.7)

and ψ(ζ) is the thickness profile. Substituting f(η) in (A.6) gives682

H(R, T ) = ηF5
N T

F3ψ(ζ), (A.8)

and adoption of the latter expression for the thickness transforms: i) Eq.683

(10) into the ODE (13); ii) the condition (12) into (15); iii) the boundary684

condition (5) into (14). These three equations are reported in the main body685

of the manuscript.686
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