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Abstract In this paper a model for injection of a power-law shear-thinning fluid
in a medium with pressure dependent properties is developed in a generalized
geometry (plane, radial and spherical). Permeability and porosity are taken to
be power functions of the pressure increment with respect to the ambient value.
The model mimics the injection of non-Newtonian fluids in fractured systems, in
which fractures are already present and are enlarged and eventually extended and
opened by the fluid pressure, as typical of fracing technology. Empiric equations
are combined with the fundamental mass balance equation. A reduced model is
adopted, where the medium permeability resides mainly in the fractures; the fluid
and porous medium compressibility coefficients are neglected with respect to the
effects induced by pressure variations. At early and intermediate time, the flow
interests only the fractures. In these conditions, the problem admits a self-similar
solution, derived in closed form for an instantaneous injection (or drop-off) of the
fluid, and obtained numerically for a generic monomial law of injection. At late
times, the leak-off of the fluid toward the porous matrix is taken into account
via a sink term in the mass balance equation. In this case, the original set of
governing equations needs to be solved numerically; an approximate self-similar
solution valid for a special combination of parameters is developed by rescaling
time. An example of application in a radial geometry is provided without and with
leak-off. The system behaviour is analysed considering the speed of the pressure
front and the variation of the pressure within the domain over time, as influenced
by the domain and fluid parameters.

Sandro Longo
Dipartimento di Ingegneria Civile, dell’Ambiente, del Territorio e Architettura (DICATeA),
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1 Introduction

The research on non-Newtonian fluid flow in porous and fractured media has en-
countered a renewed interest since the development of new, economically advanta-
geous technologies for aquifer remediation and enhanced gas recovery. Extraction
of crude oils, well drilling, and soil remediation also involve the injection of a non-
Newtonian fluid in the subsurface environment. The rheology of the fluids utilized
in these applications and technologies is described by complex models with numer-
ous parameters, like the Cross or Carreau-Yasuda relations, able to interpret in
detail the response of the fluid to a wide range of shear stress. However, in many
flows the shear rate (and the applied shear stress) varies in a limited range, making
it sufficient to adopt a simple two-parameter Ostwald-deWaele model. This simpli-
fication has the advantage of a simple macroscopic description of the relationship
between pressure gradient and flux at the Darcy scale, represented by a nonlinear
modification of the Darcy’s law (Cristopher and Middleman, 1965; Kozicki et al,
1967; Teeuw and Hesselink, 1980; Pascal and Pascal, 1985; Pearson and Tardy,
2002; Adler et al, 2013a).

The nonlinear Darcy’s law has been theoretically applied and experimentally
verified in numerous geometries for unconfined (Pascal and Pascal, 1993; Bataller,
2008; Longo et al, 2013; Di Federico et al, 2014, 2012a,b; Longo et al, 2015) and con-
fined flow of non-Newtonian power-law fluids. In the latter case, the (medium and
fluid) compressibility becomes a key element: the disturbance created by a pulse
injection of mass in a porous medium of infinite extent and homogeneous prop-
erties was analysed by several authors (Pascal, 1991a,b; Di Federico and Ciriello,
2012) considering different geometries. A further extension for a time variable fluid
injection and a monotonic spatial variation of permeability is due to Ciriello et al
(2013); joint variations of porosity can be easily incorporated into the scheme.

In other instances, changes of permeability and porosity are mainly due to pres-
sure variations within the domain. Fractured media, having macroscopic properties
drastically modified by the presence of fractures (Adler et al, 2013b), are a typical
example. In these media, permeability is inherently coupled with the microme-
chanical behaviour of the porous rock, and evolves with the applied pressure (e.g.
Yao et al (2015) and references therein). The stress-dependent nature of the per-
meability of mudrocks was demonstrated experimentally by Bhandari et al (2015).
In fracing technology (Fjaer et al, 2008), fractures typically show a permeability
increasing with pressure as a consequence of an increment of their width; they also
show a porosity increasing with pressure as a consequence of an increment of both
width and length. This second phenomenon, i.e., the extension of existing fractures
or the generation of new branches, is directly linked to the hysteretic response of
the domain to cycles of increasing-decreasing pressure. With the stress increasing,
the width of the fractures may respond linearly in the elastic regime, and return
to the original width after the pressure decrease; however the generation of new
fractures increases permanently the permeability. A second cause of hysteresis is
the presence of small particles added to the fracing fluid (Mader, 1989) which in-
hibit the closure of the fractures after pressure reduction. While the complexity of
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fracture generation and propagation cannot be easily implemented analytically, a
simplified model of pressure diffusion in subsurface media incorporating a mono-
tonic relationship between the variation of medium properties (permeability and
porosity) and pressure increments, may shed light on the fundamental properties
of non-Newtonian flow in such media, and help to estimate the sensitivity of the
pressure diffusion to plausible ranges of variation of the parameters.

The objective of this study is derive such a model for unsteady state flow of
a non-Newtonian power-law fluid, analysing the influence of various geometries.
Some empiric equations representing the fluid rheology and spatial variations of
the porous medium properties are combined with the mass balance equation. The
diffusion of pressure within the medium can be due to fluid injection (e.g., in
hydraulic fracturing), to a perturbation of seismic origin, or to the breaking of a
cap limiting a pressurized fluid reservoir. The reference model is the crack-and-
block medium described in Phillips (2009), with a clear distinction between the
permeability and the porosity due to the network of fractures and to the matrix. We
assume that the fracture network, already present within the medium or generated
by an external cause, is isotropic with a typical length scale much smaller than the
scale of the porous formation, with a permeability much greater and a porosity
decidedly smaller than the matrix. Hence, the storage of the fluid is essentially
due to the matrix whereas the flow paths, and the overall permeability, are due to
fractures. This ’double porosity’, or fractured-matrix model, has been developed
and applied in several fields by Barenblatt (see Barenblatt et al, 1990; Bai et al,
1993; De Smedt, 2011). It entails a pressure diffusion much faster than in a uniform
medium, as two phenomena take place with different time and length scales. At
short or intermediate time scales, the fluid flows in the fractures, and little or no
storage is present. At long time scales, the fluid is transferred from the fractures to
the matrix, having large storage (leak-off phase). In the present work, we adopt a
simplified continuum approach, geared at understanding the response of this type
of system to significant pressure variations. To this end, we analyze the pressure
dynamics up to an intermediate time scale, neglecting the leak-off toward the
matrix and considering the fracture network to dominate the dynamics of the flow;
this allows deriving a closed-form solution in self-similar form, extending the results
of Di Federico and Ciriello (2012) to pressure-dependent properties. Secondly, we
refine the model by including the leak-off phenomenon, which becomes dominant at
late times and is used in hydraulic fracturing technology to monitor the efficiency
of the process. The leak-off is approximated via a sink term in the mass balance
equation of the fracture network, neglecting the details of the fluid flow within the
matrix. The resulting set of the equation can be solved numerically; we show it is
amenable to a similarity solution under a special combination of parameters.

It is worth mentioning that we also simplify the geometry of the system under
analysis: real fractures have an elliptic shape (e.g., Rahim and Holditch, 1995),
open in the direction of the least principal stress and propagate in the plane
of the two other principal stresses (greatest and intermediate). Hence, different
scenarios are observed depending on the depth of the formation interested by the
fractures. Near the surface, the vertical (parallel to gravity) normal stress is limited
and the confining stresses are dominant, hence the fractures open in horizontal
planes. In deep formations, the normal stress parallel to gravity is dominant, and
fractures open and develop in vertical planes. This potential source of anisotropy
adds further complexity to the problem.
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Fig. 1 Domain schematic for plane geometry (d = 1), cylindrical (d = 2) and spherical
geometry (d = 3).

The exposition is organized as follows. The mathematical problem is formulated
in section 2 for a generalized geometry, and solved in section 3 in self-similar
form. Section 4 discusses the limits existing on problem parameters by virtue of
formulated assumptions. An application involving the injection of shear-thinning
fluid in a cylindrical geometry is presented in section 5. The effect of leak-off is
treated in section 6, while concluding remarks are formulated in section 7.

2 Problem formulation

We consider an infinite porous domain, initially at constant ambient pressure p0,
and having a plane (d = 1), cylindrical (d = 2), or spherical (d = 3) geometry
(Fig. 1). A mass of a non-Newtonian power-law fluid, increasing with time as m0t

α

(with m0 [dimensions M T−α] and α being constants), is injected in the domain
origin starting at time t = 0; α = 0, 1 corresponds to the instantaneous release
of a given mass, and to a constant mass flux, respectively. The fluid injection
generates a pressure disturbance that propagates as a one-dimensional transient
process within the domain as a function of its shape, properties, and rheology of
the injected fluid.

For plane (d = 1) or cylindrical (d = 2) geometry, the domain has constant
thickness h. For d = 1, the injection zone is a plane of area δh2, with δ being the
width/height ratio of the domain; for d = 2, 3, the injection zone is a cylindrical
or spherical well of radius rw, and the area of the injection zone is 2πhrw or 4πr2w.

The permeability k and the porosity φ of the domain vary with the pressure p
according to

k(p) = k0

(
p− p0
p∗

)β
, φ(p) = φ0

(
p− p0
p∗

)γ−1

, (1)

where k0 and φ0 are the reference permeability and porosity for p = p0, p∗ is a
pressure scale to be defined later for convenience, and β ≥ 0 and γ ≥ 1 are real
numbers governing the degree of variation of the permeability and porosity with
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pressure. Physically, β is representative of the permeability compliance, γ of the
volumetric compliance. For β = 0 and γ = 1, the domain properties are indepen-
dent of the pressure, while for β > 0 and γ > 1 the permeability and the porosity
increase with the pressure: the larger the values of β and γ, the larger the incre-
ment of permeability and of porosity, respectively, for a unit pressure increment.
As permeability and porosity are strictly related (and depend on the local stress
tensor and on the mechanical properties of the medium), so are the two expo-
nents β and γ, depending of the nature of the medium and of the adopted model
(Bai et al, 1993). In particular, the adoption of the ’cubic law’ for trasmissiv-
ity in single-fracture flow (Witherspoon et al, 1980) implies a square dependence
of permeability and a linear dependence of porosity upon aperture, resulting in
β = 2(γ − 1). Higher exponents for trasmissivity (e.g., the ’quintic-law’ in Klim-
czak et al (2010), as a consequence of a correlated length-to-aperture relationship
in fractures) imply a ratio β/(γ − 1) > 2.

The rheological power-law model describing the injected fluid reads τ = −µ̃γ̇ |γ̇|n−1

for simple shear flow, with τ , γ̇, µ̃ and n being the shear stress, shear rate, fluid
consistency index and behaviour index, respectively; n Q 1 indicates shear thin-
ning/Newtonian/shear thickening behaviour. In the following, only the case n < 1
will be considered. Flow of such fluids in porous media is usually described macro-
scopically by a modified Darcy’s law accounting for nonlinearity (e.g. Shenoy
(1995)), corroborated by experimental evidence (Cristopher and Middleman, 1965;
Yilmaz et al, 2009). The one-dimensional version of the flow law along the gener-
alized spatial coordinate r reads (neglecting gravity effects for the case d = 3)

v = −
(

k

µeff

)1/n ∂p

∂r

∣∣∣∣∂p∂r
∣∣∣∣1/n−1

, (2)

where v and p are the fluid Darcy velocity and pressure, k the medium permeability,
and µeff the effective viscosity, given by

k

µeff
=

1

2µ̃Ct

(
nφ

3n+ 1

)n (50k

3φ

)(n+1)/2

, (3)

in which the tortuosity factor Ct = Ct(n) can take different expressions; the for-
mulation Ct = (25/12)(n+1)/2 by Pascal and Pascal (1985) will be adopted in the
following.

The local mass balance equation for a generalized geometry described by d is

1

rd−1

∂

∂r

(
ρrd−1v

)
= −∂(ρφ)

∂t
, (4)
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where t is the time, ρ the fluid mass density, φ the porosity. Substituting Eq. (3)
in (2), then Eq. (2) in (4), and taking (1) into account, one obtains:

(
1

2µ̃Ct

)1/n nφ0

3n+ 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

×

 1

rd−1

∂

∂r

(
rd−1(p− p0)F1

∂(p− p0)

∂r

∣∣∣∣∂(p− p0)

∂r

∣∣∣∣1/n−1
)

︸ ︷︷ ︸
I

+ cf (p− p0)F1
∂(p− p0)

∂r

∣∣∣∣∂(p− p0)

∂r

∣∣∣∣1/n︸ ︷︷ ︸
II

 =

(p− p0)γ−2

p∗γ−1
φ0

(γ − 1)︸ ︷︷ ︸
III

+ (p− p0)c0︸ ︷︷ ︸
IV

 ∂(p− p0)

∂t
, (5)

where c0 = cf + cp ≡ (1/ρ)∂ρ/∂p is the total compressibility coefficient, cf and
cp are the compressibility coefficients of the fluid and of the porous medium,
respectively, and F1 = [β(n+1)+(γ−1)(n−1)]/(2n) is a factor incorporating the
fluid rheology and the pressure-permeability and pressure-porosity relationships.

The initial condition is

p(r, t = 0) = p0, (6)

while the general expression for the conservation of mass∫
V

dρ(p(t))φ(p(t))

dt
dV = ṁ(t) (7)

where ṁ(t) is the mass discharge entering the domain, becomes via Eq. (1)

ωh3−d
[∫ rN (t)

0
ρφ0

(
p− p0
p∗

)γ−1

rd−1dr+

∫ rN (t)

0

ρφ0c0p
∗

γ

(
p− p0
p∗

)γ
rd−1dr

]
= m(t) ≡ m0t

α, (8)

where the geometrical factor ω takes the values δ for plane, 2π for radial, and 4π
for spherical geometry (d = 1, 2, 3, respectively) and rN (t) denotes the position
of the advancing pressure front.

The full model outlined above, given by equations (5) and (8) with (6), can
be simplified using order of magnitude considerations. First, term II in in eq. (5),
representing the contribution of fluid compressibility, is of a smaller order than
term I, associated with permeability and porosity variations with pressure (this
assumption will be checked a posteriori, see §5). Further, terms III and IV represent
the effect of storage due to the opening of fractures and to fluid-porous medium
compressibility, respectively. It is assumed that their ratio (γ − 1)/[(p− p0)c0]�
1, hence only the contribution due to fracture opening (term III) is considered.
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Considering now the global mass balance given by eq. (8), the ratio between the
first and the second term on the l.h.s. is γ/[(p − p0)c0]. As γ ≥ 1, it follows that
γ/[(p−p0)c0] > (γ−1)/[(p−p0)c0]� 1, and consequently the second term within
brackets can be neglected. The reduced model, in which the fluid and porous
medium compressibility coefficients are negligible, then reads

(
1

2µ̃Ct

)1/n nφ0

3n+ 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

× 1

rd−1

∂

∂r

(
rd−1(p− p0)F1

∂(p− p0)

∂r

∣∣∣∣∂(p− p0)

∂r

∣∣∣∣1/n−1
)

=

(p− p0)γ−2

p∗γ−1
φ0(γ − 1)

∂(p− p0)

∂t
, (9)

ωh3−d
∫ rN (t)

0
ρφ0

(
p− p0
p∗

)γ−1

rd−1dr = m0t
α. (10)

The mathematical statement of the problem is completed by the boundary condi-
tions at the pressure front rN (t), i.e.

p (rN (t), t) = p0, (11)

∂p

∂r

∣∣∣∣
rN (t)

= 0, (12)

rN (0) = 0, (13)

valid for a shear thinning fluid with n < 1 (Pascal and Pascal, 1985, 1990; Di
Federico and Ciriello, 2012; Ciriello and Di Federico, 2012). The velocity of the
pressure front in this case is finite and given by u(t) = φdrN/dt.

Dimensionless variables are defined as follows:

(R,H,RN , T, P, P0, V, U,M0) =(
r

r∗
,
h

r∗
,
rN
r∗
,
t

t∗
,
p

p∗
,
p0
p∗
,
v

v∗
,
u

v∗
,
m0t

∗α

ρr∗3

)
, (14)

where p∗ = 1/c0 is the pressure scale introduced in (1), t∗ is a timescale given by

t∗ =
ρ(n+1)/2c

(n−1)/2
0 k

(n+1)/2
0

µ̃
, (15)

r∗ is a length scale defined as

r∗ =
ρn/2c

(n−2)/2
0 k

(n+1)/2
0

µ̃
, (16)

and v∗ is the velocity scale given by

v∗ =

√
1

ρc0
. (17)



8 Sandro Longo, Vittorio Di Federico

Eqs (2-9-10) become, in non dimensional form

V = − (γ − 1)φ0

A
(P − P0)F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣1/n−1 ∂(P − P0)

∂R
, (18)

1

Rd−1

∂

∂R

(
Rd−1(P − P0)F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣1/n−1 ∂(P − P0)

∂R

)
=

A(P − P0)γ−2 ∂(P − P0)

∂T
, (19)

∫ RN (T )

0
(P − P0)γ−1Rd−1dR = Λ0T

α, (20)

where the two parameters

A = (γ − 1)(2Ct)
1/n 3n+ 1

n

(
3φ0

50

)(n+1)/(2n)

, Λ0 =
M0

ωH3−dφ0
(21)

are proportional to the volumetric compliance coefficient and to the strength of
the injection, respectively. Equations (6) and (11-12-13) expressing initial and
boundary conditions are formally unchanged, except that dimensionless quantities
(in capital letters) replace dimensional ones.

3 Solution to the problem

The mathematical problem is amenable to a self-similar solution, with the simi-
larity variable defined as

η = AF4R/TF2 . (22)

The solution then takes the form

RN (T ) = ηNA
−F4TF2 , (23)

P (R, T ) = P0 +AdF4/(γ−1)ηF5

N TF3Ψ(ζ), (24)

F2 =
α[(n+ 1)(β − γ + 1) + 2] + 2n(γ − 1)

d[(n+ 1)(β − γ + 1) + 2] + 2(n+ 1)(γ − 1)
, (25)

F3 =
2α(n+ 1)− 2nd

d[(n+ 1)(β − γ + 1) + 2] + 2(n+ 1)(γ − 1)
, (26)

F4 =
2n(γ − 1)

d[(n+ 1)(β − γ + 1) + 2] + 2(n+ 1)(γ − 1)
, (27)

F5 =
2(n+ 1)

(n+ 1)(β − γ + 1) + 2
, (28)

where ζ = η/ηN , and the coefficient ηN (α, β, Λ0) indicates the value of η at the
pressure front. Hence (19) and (20) transform respectively into

d

dζ

(
ζd−1ΨF1

dΨ

dζ

∣∣∣∣dΨdζ
∣∣∣∣1/n−1

)
= F3ζ

d−1Ψγ−1 − F2ζ
dΨγ−2 dΨ

dζ
, (29)



Nonlinear porous flow with pressure-dependent properties 9

ηN =

(
1

Λ0

∫ 1

0
ζd−1Ψγ−1dζ

)−1/[d+F5(γ−1)]

, (30)

with boundary conditions

Ψ(1) = 0,
dΨ

dζ
(1) = 0. (31)

When the injection is instantaneous (α = 0), a closed-form solution is derived in
the form

Ψ(ζ) = D(1− ζn+1)F5/(n+1), ηN =

(
Λ0

Dγ−1E

)1/[d+F5(γ−1)]

, (32)

D =

[
1

F5

(
F2

γ − 1

)n]F5/(n+1)

, (33)

E =
1

n+ 1
B

(
d

n+ 1
, 1 +

F5(γ − 1)

n+ 1

)
, (34)

where B(·, ·) is the beta function.
For α 6= 0 the integration is performed numerically; a second boundary condi-

tion on the first derivative near the front end is computed by expanding the shape
function in series, obtaining

dΨ

dζ

∣∣∣∣
ζ→1

= a0(1− ζ)a1 , (35)

a0 =

(
F2

a
1/n
1 F1 + (a1 − 1)/n

)na1

, a1 =
1

nF1 + 1 + n(1− γ)
. (36)

The shape factor ψ(ζ) obtained analytically or by numerical integration is depicted
in Figure 2 for cylindrical geometry (d = 2), instantaneous and constant rate
injection (α = 0 and 1), various values of n and β, and γ = 1.25. The shape
factor is seen to increase with rate of injection α and permeability compliance β,
and to decrease with rheological index n, permeability compliance γ and geometry
parameter d (not shown). The dependence on β is attenuated as α increases. The
prefactor ηN is likewise illustrated in Figure 3 for d = 2, various values of n and β,
and γ = 1.25, showing its dependency on α for different values of the parameter
Λ0 = 1.0, 0.1, 0.01. It is seen that ηN consistently decreases with α and Λ0 for all
cases, while it increases or decreases with n and β depending on the α value. The
dependence on Λ0 and n is more marked than that on α and β except for values
of α close to zero. The shape factor decreases for increasing γ (not shown); it also
decreases for increasing d but only for α = 0, and the opposite is true for α = 1
(not shown).
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Fig. 2 Shape factor Ψ as a function of dimensionless rescaled similarity variable ζ for cylin-
drical geometry, d = 2; results are shown for n = 0.25, 0.50, 0.75 (upper, intermediate, and
lower row) and α = 0, 1 (left and right column), with β = 0.25, 0.50, 0.75 (dashed, solid, and
dash-dotted line) and γ = 1.25.
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Fig. 3 Prefactor ηN as a function of α for cylindrical geometry, d = 2, for Λ0 = 1.0, 0.1, 0.01
(upper, intermediate, and lower panel), with n = 0.25, 0.50, 0.75 (dashed, solid, and dash-
dotted line), β = 0.25, 0.50, 0.75 (thin, medium, and thick line) and γ = 1.25.
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4 Limits of validity

It is noted that for the solution to retain a physical meaning, the expression (23)
of the distance of propagation of the pressure front RN (T ) needs to increase with
time, hence F2 > 0. This leads to a set of limitations on the values of model
parameters γ, β, α, n. Upon setting (γ − 1)/(β + 2) < 3, or equivalently γ < γ0 ≡
3β + 7 (a bound needed only for the case of spherical geometry with d = 3, a
plausible assumption since for a single fracture β = 2(γ − 1)), these limitations
simplify as follows: i) for γ ≤ γ1 ≡ (n + 3)/(n + 1), F2 > 0 for any β, α, n; ii) for
γ > γ1 and β ≥ β1 ≡ γ − γ1 = γ − (n + 3)/(n + 1), F2 > 0 for any α, n; iii) for
γ > γ1 and β < β1, F2 > 0 for

α < α0 ≡
2n(γ − 1)

(n+ 1)(β − γ + 1) + 2
, (37)

i.e., the injection rate (α) must not exceed a critical limit value α0 depending on
domain properties (β and γ) and fluid behaviour index (n) but not on geometry
(d). In practice, a threshold value is set to the strength of the injection only when
the permeability-pressure coefficient β and porosity-pressure coefficient γ − 1 are
markedly different.

Under these assumptions, the pressure front accelerates, has constant speed or
decelerates depending whether F2 − 1 ≷ 0. A detailed analysis, reported in Ap-
pendix A, shows that the critical parameters γ1(n), γ2(n, d), β1(n, γ), β2(n, γ, d),
α1(n, γ, β, d) govern this dependency. For plane geometry (d = 1), only γ1(n),
β1(n, γ), and α1(n, γ, β, d) are relevant, while for cylindrical or spherical geometry
(d = 2, 3) two additional critical parameters β2(n, γ, d) and γ2(n, d) emerge. Some
critical parameters are defined only beyond a threshold value of (an)other criti-
cal parameter(s). β1(n, γ) and γ1(n) coincide with the parameters reported above
discussing the positivity of the exponent F2.

Finally, the pressure field increases or decreases with time at a given location
if F3 ≷ 0, equivalent to α ≷ α2(n, d), with α2 = dn/(n+ 1).

Figure 4 depicts the combinations of values leading to an accelerated current
and to a time-decreasing pressure field for a fluid with n = 0.5 and for different
geometries (d = 1, 2, 3), for different values of γ and highlighting the case γ = 4.
We observe that increasing β (i.e., increasing the efficiency of the overpressure
in widening the fractures, with a consequent increment of the permeability) or
reducing γ (the compliance) requires lower α values to generate an accelerating
pressure front. In conditions of large enough compliance (γ > γ1, as shown in the
Figure) the critical value β1 is an asymptote for α1, and for β < β1 the pressure
front is decelerated for any strength of the injection (α). In conditions of lower
compliance (γ ≤ γ1) the permeability-pressure relationship (β) is not influential,
and the type of pressure front (decelerated/accelerated) is linked only to α.

An accelerating pressure front can appear for low β and α and high γ, see the
the right lower corner of the lower panel for d = 3. This is the case of a ’stiff’ system
with strong increment of storage capacity with overpressure (e.g., a system where
a network of micro-fractures develops, with a limited increment of permeability
but a strong increment of porosity), subject to inflow with moderate α. The Figure
also shows that the pressure field increases in time if α > α2; this limit increases
with dimensionality as expected. For d = 1, an accelerating pressure front can only
be coupled with a time-increasing pressure. For d = 2 3, an accelerating pressure
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Fig. 4 Constraints on the parameters α and β for n = 0.5 and d = 1, 2, 3 (γc = 2.33). i)
The combination of parameters leading to an accelerated pressure front lies to the right of
the curve for given γ (also to the left for d = 3). The cross-hatched areas represent valid
combinations for γ = 4; the corresponding critical value β1 of β is shown with the vertical
dotted line β = β1, which is an asymptote for α1; the asymptotes for different values of γ
are not shown for clarity. ii) The condition of decreasing pressure within the porous domain
is given by α < α2; the coloured area (yellow online), delimited by the dashed line α = α2,
represents these conditions.

front can be also coupled with time-decreasing pressure, provided that γ > γ2 and
β < β2.

Focusing on the most common cases of injection, i.e. impulsive (α = 0), and
constant influx (α = 1) we conclude that: (i) impulsive injection generates a pres-
sure field always decreasing in time, with the pressure front never accelerating for
d = 1, and possibly accelerating for a combination of sufficiently high values of γ,
and sufficiently low values of β, for d = 2, 3. (ii) Constant influx injection generates
a pressure field always increasing in time, for d = 1; generally increasing in time
(and stationary in the limit case n = 1), for d = 2; decreasing/increasing in time
for n ≷ 1/2, for d = 3. (iii) Constant influx injection generates a pressure front
always decelerating for d = 1, 2, and accelerating for γ > γ3 ≡ [β(n+1)+n+2]/n,
for d = 3.

5 An example application

We consider the injection of a power-law shear-thinning fluid following the proce-
dures of fracing for stimulating oil or gas production in existing wells. The fluid
rheology during the initial phase of the fracing procedure (no significant leak-off),
is described by a power-law model with behaviour index n = 0.5, consistency index
µ̃ = 1.5 Pa · sn, mass density ρ = 1000 kg · m−3. We assume that a vertical well
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Fig. 5 (a) Left panel: Pressure distribution after 30 minutes with a constant rate injection
(α = 1) in cylindrical geometry (d = 2). (b) Right panel: Front end position against time.
β = 0.25 (continuous line); β = 0.5 (dashed line); β = 0.75 (dashdot line). γ = 1.25 (thick
lines), γ = 1.5 (thin lines). The mass flow rate is m0 = 3.0 kg · s−1. Shear-thinning fluid with
n = 0.5, µ̃ = 1.5 Pa · sn, ρ = 1000 kg ·m−3.

allows a constant flow rate injection (α = 1) equal to 3.0 kg · s−1in a horizontal gas
or oil-bearing formation with thickness h = 10 m and a nominal permeability and
porosity of the fractures equal to k0 = 1.1 · 10−12 m2 and φ0 = 0.01, respectively.
The permeability of the matrix is taken to be kM = 1.1 · 10−15 m2 (including the
effect of the filter cake at the interface between fractures and matrix); its poros-
ity is equal to φM = 0.1. The ratio between the permeabilities of fractures and
matrix is 1000, that between corresponding porosities is 0.1, rendering the sim-
plified model described in the previous Section applicable for a radial geometry
(d = 2). The pressure front is decelerated (α = 1 < α1 = 2.25) Figure 5 shows the
pressure distribution within the domain at a given time, and the position of the
pressure front versus time, for different values of β and γ. It is seen that increasing
β and γ implies higher pressures. The sensitivity to variations of γ is higher than
to variations of β, implying that the compliance parameter γ is a key factor in
determining system behaviour. The diffusion of pressure is faster for decreasing β
and increasing γ. Increasing the fluid behaviour index of the fluid, or the consis-
tency, reduces the mobility hence the speed of the pressure front is reduced and
the pressure at the injection well is enhanced (not shown).

Figure 6 shows the absolute value of the ratio between the terms in eq.(5).
The left panel shows that term II is smaller than term I except near the origin
for ζ <≈ 0.1, with a weak dependence on time. The right panel shows that term
IV is smaller than term III for ζ <≈ 0.2 for T = Tmax. Hence the assumptions in
deriving the simplified model are satisfied in most of the domain.

6 The effect of leak-off

The much higher permeability of the fractures with respect to the matrix, justifies
a model where the flow into the matrix is neglected at least during the early
stage of injection. In addition, fluid loss is also limited because the fracing fluids
favour the building of a filter cake on the fracture face. At larger times, the fluid
seeps into the matrix and leak-off can be very high. A further distinction can be
made between matrix leak-off and fissure leak-off. The former is controlled by the
characteristics of the matrix, e.g., permeability, compressibility, pore-size, fluid
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Fig. 6 (a) Left panel: absolute value of the ratio between terms I and II in eq.(5).(b) Right
panel: absolute value of the ratio between terms III and IV in eq.(5). Curves refer to 10−2Tmax
(continuous line), 10−1Tmax (dashed line), and Tmax (dashdot line).

rheology, and by the wall filter-cake; the latter is controlled by the characteristics
of the fissured rock. A first approximation of the leak-off phenomenon can be
obtained by neglecting the details of the fluid flow within the matrix, considering
only its effects on mass balance. By assuming that the internal pressure in the
matrix is equal to the initial ambient value p0, the internal pressure gradient
controlling the flow from the fractures to the matrix is of order (p − p0)/l, being
l a characteristic size of the block. The velocity of the leaking-off fluid hence can
be expressed as

u ≈
(
kM
µeff

)1/n (p− p0)1/n

l1/n
, (38)

and eq. (9) becomes

(
1

2µ̃Ct

)1/n nφ0

3n+ 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

× 1

rd−1

∂

∂r

(
rd−1(p− p0)F1

∂(p− p0)

∂r

∣∣∣∣∂(p− p0)

∂r

∣∣∣∣1/n−1
)
−

(
1

2µ̃CtM

)1/n nφM
3n+ 1

(
50kM
3φM

)(n+1)/(2n) (p− p0)1/n

l1+1/n
=

(p− p0)γ−2

p∗γ−1
φ0(γ − 1)

∂(p− p0)

∂t
, (39)

where the subscript M indicates the variable or parameter is referred to the matrix.
In dimensionless form, the previous equation becomes

1

Rd−1

∂

∂R

(
Rd−1(P − P0)F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣1/n−1 ∂(P − P0)

∂R

)

− λ (P − P0)1/n = A(P − P0)γ−2 ∂(P − P0)

∂T
, (40)

where the leak-off term is proportional to the parameter

λ =

(
Ct
CtM

)1/n (kM
k0

)(n+1)/(2n) ( φ0

φM

)(1−n)/(2n) (r∗
l

)1+1/n

. (41)
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The modified integral mass balance reads in dimensionless form as

∫ RN (T )

0
(P − P0)1/nRd−1dR

+ F

∫ T

0

∫ RN (T )

0
(P − P0)1/nRd−1dRdT = Λ0T

α, (42)

with

F =

(
r∗

l

)(n+1)/n (kM
k0

)(n+1)/(2n)

× n

3n+ 1

1

φ0φ
(1−n)/(2n)
M

(
50

3

)(n+1)/(2n) ( 1

2CtM

)1/n

, (43)

and where the second term on the left hand in eq. (42) is the mass leak-off.
The initial and the boundary condition are still coincident with equations (6)

and (11-12-13) with dimensionless quantities replacing dimensional ones.
The differential problem outlined above, including mass leak-off, does not have

a general self-similar solution, and needs to be solved numerically. However, for
the special case γ − 1 = 1/n (implying 2 < γ < 6 for 0.2 < n < 1), the following
transform 

f = (P − P0) exp(λT )

τ =
1− exp(−λF1lT )

λF1l
,

(44)

with F1l ≡ F1(γ − 1 = 1/n), reduces eq. (40) to

1

Rd−1

∂

∂R

(
Rd−1fF1l

∣∣∣∣ ∂f∂R
∣∣∣∣1/n−1 ∂f

∂R

)
= Af1/n−1 ∂f

∂τ
. (45)

The transform was suggested by Gurtin and MacCamy (1977) and later on used
by King and Woods (2003) in a similar context.

By assuming the further constraint∫ RN (T )

0
f1/nRd−1dR = Λ0τ

α, (46)

coincident with eq. (20) for T → 0, a self-similar solution formally identical to eqs
(22-23-24) can be obtained upon defining

ηl = AF4l

l R/τF2l . (47)

The similarity solution then takes the form

RNl(τ) = ηlNA
−F4l

l τF2l , (48)

f(R, τ) = AndF4l

l ηF5l

lN τF3lΨ(ζl), (49)

where ζl = ηl/ηlN and the subscript l indicates the leak-off solution for the special
case considered, i.e. γ − 1 = 1/n. The new similarity solution is an approximation



Nonlinear porous flow with pressure-dependent properties 17

Fig. 7 Mass injection function for the original problem, M(T ) ∝ Tα with α = 1 (bold line),
and for the problem with leak-off for F1l = 0.5 and λ = 0.001 (dashed line) and 0.01 (dashdot
line). The corrected exponents are αcorr = 1.008, 1.084, respectively.

of the real solution under certain hypotheses. In terms of the original variables P
and T , the constraint represented by eq. (46) reads∫ RN (T )

0
(P − P0)1/nRd−1dR = Λ0

[
1− exp(−λF1lT )

λF1l

]α
exp

(
−λ
n
T

)
, (50)

and implies an injection of mass with a different law respect to the monomial
expression Λ0T

α adopted in eq.(42). Moreover, the leak-off mass is not included
in the balance. However, at short times the contribution of the leak-off to the
integral mass balance can be neglected since the value of F is usually very low,
being kM/k0 ≈ 10−1− 10−3 and being the other coefficients in eq.(43) of O(1). In
addition, a small correction of the exponent α renders[

1− exp(−λF1lT )

λF1l

]αcorr

exp(−λ
n
T ) ≈ Tα, (51)

where αcorr is the corrected value of α, at least for a time interval 0 < T < Tmax,
with αcorr and Tmax depending on λ, F1l, n. Figure 7 show the mass injection
function for the original problem and for the problem with leak-off for n = 0.5,
F1l = 0.5 and λ = 0.001, 0.01. The values αcorr = 1.008, 1.084 are computed
imposing the mass injected in the system to be identical at time T = 10.

Figure 8 show the pressure distribution within the domain and the position of
the pressure front versus time, comparing results obtained with and without leak-
off. We note that the inclusion of the leak-off phenomenon entails a reduced speed
of the pressure front and reduced values of pressure at each section. A more intense
leak-off (larger values of parameter F ) increase the discrepancy with respect to
the ’sealed’ fracture model not including leak-off.

7 Conclusion

We have presented a novel model describing the one-dimensional diffusion of a
pressure front in generalized geometry (plane, radial, and spherical) due to the in-
jection of a shear-thinning fluid in a fractured medium, when the fractures widen
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Fig. 8 Comparison between results without leak-off (continuous lines) and with leak-off
(dashed lines) for a constant injection rate (α = 1) in cylindrical geometry (d = 2). The mass
flow rate is m0 = 1.0 kg ·s−1. Fluid parameters are n = 0.75, µ̃ = 1.0 Pa ·sn, ρ = 1000 kg ·m−3.
Domain parameters are β = 1.0, γ = 1 + 1/n = 2.33, λ = 0.00021. The mass leak-off factor is
F = 0.048, and the corrected value of the injection exponent for the approximated self-similar
solution is αcorr = 0.999. (a) Left panel: Pressure distribution after 10-20-30 minutes. (b)
Right panel: Front end position against time.

proportionally to the pressure level with a monotonic law. Upon starting the in-
jection, the fluid widens the fractures and flows at a progressively larger rate due
to the increased permeability of the fractures and, at a second stage, also filtrates
into the porous matrix surrounding the fractures (leak-off phenomenon).

The properties of the fractured medium controlling the process are the nominal
storage capacity φ0 and permeability k0, with the two exponents β > 0 and γ > 1
expressing the permeability and compliance variation with pressure, respectively.

When the leak-off toward the porous matrix is negligible, a self-similar solution
is obtained when the injected mass increases with time according to m ∝ tα. A
closed-form expression is derived for an instantaneous injection (α = 0), while nu-
merical integration is warranted for the general case α 6= 0. When mass leak-off is
included, The more realistic case including mass leak-off can be solved via numeri-
cal integration of the differential problem; an approximate self-similar solution can
be obtained in the special case γ = 1 + 1/n.

The self-similar solutions allow deriving the time behaviour of the pressure
within the domain, and the rate of advancement of the pressure front, as a function
of model parameters. An analysis of their effect on the solution suggests some
combination of parameters yield unphysical results; hence, the possible ranges of
variation of the parameters are defined with the help of some critical values of the
inflow rate α. In most cases of practical interest, a constant injection rate (α = 1)
entails a decelerated pressure front and a decay over time of the pressure within the
domain. The pressure diffusion is faster for high volumetric compliance (γ) and
low permeability compliance (β). Very shear-thinning (n � 1) fluids propagate
faster than shear-thinning or quasi-Newtonian fluids. The effect of leak-off is a
reduced speed of the pressure front and lower pressure within the domain. In
general, the pressure at the origin decays quite fast and is highly sensitive to the
fluid rheological characteristics and to the mass discharge. In a linear or cylindrical
geometry (d = 1, 2) a constant influx (α = 1) always generates a time-increasing
pressure and a decelerated pressure front. In radial geometry (d = 3) the same
behaviour is obtained provided n < 1/2, otherwise the pressure is time decreasing.
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A Appendix

The purpose of this Appendix is to illustrate the combinations of model parameters γ, β, α
associated to a decelerated (F2 − 1 < 0), constant speed (F2 − 1 = 0), or accelerated pressure
front (F2 − 1 > 0), respectively; the fluid rheology (n) and the domain geometry (d) are
not subject to constraints. First of all, the critical parameters listed in Table 1 are derived;
the parameters γ1 and β1 are those reported in Section 4 discussing the positivity of the
exponent F2. The combinations of parameters leading to F2−1 ≷ 0 are reported in Table 2 for
plane geometry and in Table 3 for cylindrical and spherical geometry. Tables 2 and 3 include
the conditions derived in Section 4 for the positivity of F2. Note that when the conditions
γ > γi, i = 1, 2 appear, it is also implied that γ < γ0 for d = 3, as the latter condition is
required for the validity of the solution in spherical geometry; there is no contradiction since
for d = 3, γi < γ0 for all combinations of parameters.

d = 1 d = 2, 3

γ1
n+ 3

n+ 1

γ2 −
d(n+ 3)− 2

d(n+ 1)− 2

β1
(γ − 1)(n+ 1)− 2

n+ 1

β2 −
(γ − 1)[d(n+ 1)− 2]− 2d

d(n+ 1)

α1
d[(n+ 1)(β − γ + 1) + 2] + 2(γ − 1)

(n+ 1)(β − γ + 1) + 2

Table 1 Critical parameters γ1(n), γ2(n, d), β1(n, γ), β2(n, γ, d), α1(n, γ, β, d) for plane ge-
ometry (d = 1, first column) and cylindrical or spherical geometry (d = 2, 3, second column).
Some critical parameters are defined only beyond a threshold value of (an)other critical param-
eter(s): β1 for γ > γ1, β2 for γ > γ2, α1 for γ ≤ γ1∨(γ > γ1∧β > β1)∨(d > 1∧γ > γ2∧β < β2).

F2 < 1 (∀γ ∧ ∀β ∧ α = 0) ∨ (γ > γ1 ∧ β < β1 ∧ α < α0)∨

(γ ≤ γ1 ∧ ∀β ∧ α < α1) ∨ (γ > γ1 ∧ β > β1 ∧ α < α1)

F2 = 1 (γ > γ1 ∧ β = β1 ∧ ∀α) ∨ (γ ≤ γ1 ∧ ∀β ∧ α = α1) ∨ (γ > γ1 ∧ β > β1 ∧ α = α1)

F2 > 1 (γ ≤ γ1 ∧ ∀β ∧ α > α1) ∨ (γ > γ1 ∧ β > β1 ∧ α > α1)

Table 2 Conditions for decelerated (F2 < 1), constant speed (F2 = 1), and accelerated
(F2 > 1) pressure front for plane geometry (d = 1).
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F2 < 1 (γ1 < γ ≤ γ2 ∧ β ≤ β1 ∧ α < α0) ∨ (γ > γ2 ∧ β2 < β ≤ β1 ∧ α < α0)∨

(γ ≤ γ2 ∧ ∀β ∧ α = 0) ∨ (γ > γ2 ∧ β > β2 ∧ α = 0) ∨ (γ > γ2 ∧ β = β2 ∧ 0 < α < α0)∨

(γ ≤ γ1 ∧ ∀β ∧ α < α1) ∨ (γ > γ1 ∧ β > β1 ∧ α < α1) ∨ (γ > γ2 ∧ β > β2 ∧ α1 < α < α0)

F2 = 1 (γ > γ2 ∧ β = β2 ∧ α = 0) ∨ (γ ≤ γ1 ∧ ∀β ∧ α = α1)∨

(γ > γ1 ∧ β > β1 ∧ α = α1) ∨ (γ > γ2 ∧ β < β2 ∧ α = α1)

F2 > 1 (γ ≤ γ1 ∧ ∀β ∧ α > α1) ∨ (γ > γ1 ∧ β > β1 ∧ α > α1) ∨ (γ > γ2 ∧ β < β2 ∧ α < α1)

Table 3 Conditions for decelerated (F2 < 1), constant speed (F2 = 1), and accelerated
(F2 > 1) pressure front for cylindrical and spherical geometry (d = 2, 3).
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