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We are investigating flows in the viscous-buoyancy balance regime in a converging channel with an upward
increase in width, with the gap of the channel varying according to a xkzr power function, being x and z the
horizontal and vertical coordinate, respectively, and with 0 < k < 1 and 0 < r < 1 in order to be consistent
with the model. The fluid rheology is described according to a Ostwald-deWaele model, with a power-law
relationship between shear stress and shear rate, and with application for shear-thinning, shear-thickening
and, as a special case, Newtonian fluids. While for the case of flow in the direction of widening of the
horizontal channel, a self-similar solution of the first kind can be expected, for flow towards the origin, with
channel narrowing horizontally, the solution is self-similar of the second kind, with the space and a reduced
time coupled in a self-similar independent variable but with an unknown parameter of the transformation
group that makes the differential problem invariant. The solution is found in the phase plane by numerical
integration of the paths connecting pairs of singular points, separately for the pre-closure phase, in which the
current front advances invading the channel, and for the post-closure or levelling phase, in which the fluid
has reached the origin and the front no longer propagates, while the level progressively increases cancelling
the pressure gradient. Integration is performed with a trial and error procedure by modifying the unknown
parameter, generally named eigenvalue and specifically critical eigenvalue when the path has been successfully
integrated. The overall effect of an increasing permeability upwards is that of an increase in front speed, with
the current profile also becoming locally steeper. The effect of an increase in the fluid-behaviour index is
mixed, as it reduces the speed of the front but still increases the steepness of the local current profile. In any
case, the model implies that the eigenvalue tends to infinity for k → 1 even in the presence of an increase in
vertical permeability (r > 0).

I. INTRODUCTION

Numerous environmental flow fields and other related
to everyday experience, differ from each other only in
scale factors, being intimately related to the same family
of differential problems in which, at most, the value of
certain parameters varies. Lava flows and honey spread-
ing on a slice of toast share many characteristics and are
described by a differential problem of the same nature.
What varies most frequently are the initial conditions and
boundary conditions, which fortunately are often (not al-
ways) forgotten to make way for an evolution dictated
only by local conditions or, in any case, oblivious to in-
fluences far away in time and space. To this category
belong the self-similar solutions of the first and second
kind, brought to the fore by Barenblatt1 with the intro-
duction of the concept of ”intermediate asymptotics”, i.e.
valid not too early nor too late, but only in an intermedi-
ate interval. Self-similar solutions are an approximation
of the complete solution, with the advantage, however,
that the tools at our disposal allow them to be more eas-
ily found in place of the complete solution, moreover in
analytical form whereas the complete solution can almost
always be known in numerical form.

In simple terms, self-similar solutions of the first kind

a)https://sandro.longo.unipr.it/

are characterized by the fact that by applying the criteria
of dimensional analysis, on the basis of a general princi-
ple of covariance, it is possible to reduce the number of
variables involved in the description of the physical prob-
lem, and it is often possible to define the structure of the
solution as a power-function; this is the first step in trans-
forming, for example, partial derivative problems into or-
dinary derivative problems, with all the advantages that
this entails2,3. A more rigorous definition specifies that
it is possible to identify a group of transformations with
one or more known parameters (Lie group) that makes
the differential problem invariant: the problem can be
rewritten with a number of variables reduced by a value
equal to the number of parameters in the transformation
group.

In other cases, we do not have enough information to
analytically identify the transformation group, but only
its structure except for one parameter. This leads to self-
similarities of the second kind, in which the parameter is
a part of the solution and is called an eigenvalue. The
most favourable case is that the solution leads to a sin-
gle eigenvalue, instead of a discrete set or spectrum of
eigenvalues.

Gravity currents admitting second kind self similar so-
lutions have been studied by several Authors4–10. Zheng
et al. (2014)11 extended the interpretation of the ef-
fects of heterogeneity on second-kind self-similar solu-
tions, with a further extension in Zheng et al. (2015)12,
where a permeable substrate was also included.
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In parallel, the analysis was extended to the case
of non-Newtonian power-law fluids13,14, including both
propagation in converging channels in Hele-Shaw similar-
ity, and circular symmetrical currents with flow towards
the origin. The latter refer to a flow field dominated
by vertical rather than horizontal dynamics. The review
in Gratton15 and in Zheng & Stone16 provide a detailed
overview of the most relevant and of some recent contri-
butions.

One flow configuration that has apparently been left
out until now is the flow of gravity currents in converg-
ing channels with increasing permeability in the vertical
direction. This is equivalent to a fracture with a change
in width in the horizontal direction but also in the verti-
cal direction, and can be traced back to the case of flow
in porous media with a change in permeability/porosity
in the two main directions of flow11,14,17. For the case of
flow in the direction of the horizontally widening channel,
we expect a self-similar solution of the first kind, since
it is possible to use the criteria of dimensional analysis
to determine analytically the transformation that leaves
the differential problem invariant3.
The present work focuses on the theoretical analysis of

this specific configuration and flow advancing towards the
origin, also including non-Newtonian power-law fluids, in
a context where a self-similarity of the second kind is
expected.

II. THEORY

A. The formulation of the model

We are considering a gravity current of a viscous fluid,
described by a Ostwald-deWaele (OdW) model18,19,
propagating towards the origin x = 0, in the direction
of negative x in a channel of variable cross-section. The
OdW model in one dimension reads

τ = µ0|γ̇|n−1γ̇, (1)

where τ is the tangential stress and γ̇ is the strain rate.
The consistency index µ0 is a viscosity-like parameter,
and the fluid behaviour index n controls the extent of
shear-thinning (n < 1) or shear-thickening (n > 1), with
n = 1 corresponding to a Newtonian fluid. The channel
has a width varying in the horizontal and in the vertical
direction, b(x, z) = b0x

kzr, where [b0] = L1−k−r, 0 < k <
1, and 0 < r < 1. The current evolves toward the origin,
with a negative horizontal velocity, by assuming that (i)
hydrostatic pressure distribution holds; (ii) the dynamics
is in the horizontal, with τyx ≫ τxz and negligible τyz,
and we are in narrow current configuration; no slip at the
side wall at y = ± b/2 and null shear stress at y = 0; (iv)
surface tension has negligible effects and no fingering at
the interface with the ambient fluid, and (v) the ambient
fluid has a negligible role and does not interact with the

FIG. 1. Horizontal channel with varying width in the horizon-
tal and in the vertical, b0x

kzr. A converging gravity current in
viscous-buoyancy balance propagates toward the origin, with
the instantaneous front position xf and with xf ≡ x0 the
front position at time t = 0.

main current. Some of these conditions are met in only
part of the domain. For example, the surface tension
is considered negligible when the smallest dimension of
the current (generally, the average width, coincident with
the average width of the fracture) is greater than the

capillary length11 equal to
√
σ/(∆ρ g), where σ is the

surface tension, ∆ρ ≡ ρc − ρa is the density difference
between the intruding current and the ambient fluid and
g is gravity.

We are in the condition that we can neglect the verti-
cal velocity and use the lubrication approximation, with
an essentially one-dimensional flow field everywhere ex-
cept near the front of the current, where the capillary
length may be locally important and where the tangen-
tial stresses field is more varied than in the body of the
current. With an analysis of the orders of magnitude of
the different terms, it turns out that the validity condi-
tions of the lubrication approximation are: |db/dx| ≪ 1,
dh/dx ≪ 1 and an aspect ratio b(xf )/xf ≪ 1. It is also
requested that 0 < k < 1 and 0 < r < 1 in order to
have an average aspect ratio not increasing with x. The
balance is between viscous force and pressure gradient,
leading to:

∂τyx
∂y

+
∂p

∂x
= 0 → ∂

∂y

[
µ0

(
∂u

∂y

)n]
= ∆ρ g

∂h

∂x
, (2)

where h(x, t) is the current depth. This is an approxima-
tion with negligible inertial terms and in the hypothesis
that the dominant velocity variation is in the y direction.
Integrating we calculate:
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u(x, y, z, t) = −sgn

(
∂h

∂x

) ∣∣∣∣∂h∂x
∣∣∣∣1/n(∆ρ g

µ0

)1/n
n

n+ 1

[(
b0x

kzr

2

)1+1/n

− |y|1+1/n

]
, 0 ≤ z ≤ h, |y| ≤ b0x

kzr

2
, (3)

where the no-slip condition at y = ±(b0/2)x
kzr and the

null stress condition at y = 0 have been used.
The stream-wise horizontal velocity of the current av-

eraged over the cross-section is

u(x, t) = −sgn

(
∂h

∂x

)(
b0x

k

2

)(n+1)/n
n2(r + 1)

(2n+ 1)[r(2n+ 1) + n]

(
∆ρ g

µ0

)1/n

hr(n+1)/n

∣∣∣∣∂h∂x
∣∣∣∣1/n . (4)

For an incompressible fluid in a monodimensional cur-
rent, the mass conservation is

∂Ω

∂t
+

∂Ωu

∂x
= 0, (5)

where Ω is the cross-section area and Ωu is the flow rate.
The cross-section area is Ω = b0/(r + 1)xkhr+1 and the
flow rate is Q ≡ Ωu = b0/(r + 1)xkhr+1u(x, t). For
simplicity, in the following we eliminate the overline on
u. Substituting in eq.(5), the mass conservation reads

∂hr+1

∂t
+

1

xk

∂(xkhr+1u)

∂x
= 0. (6)

The differential problem solution requires the specifica-

tion of boundary and initial conditions. If the domain
occupied by the current were limited, we could impose
mass conservation by possibly including an input or out-
put flow rate. On the other hand, we are in the condition
in which the extent of the current is such that it loses the
memory of the boundary conditions; this can lead to the
solution becoming self-similar, but there is a loss of infor-
mation that uniquely characterizes the solution. A quick
calculation indicates that a self-similar solution of the
first kind is not possible, since at least one other equa-
tion is missing to identify the transformation group in
which the differential problem is invariant. To adimen-
sionalize the problem, instead of using scales ”external”
to the flow field we consider ”internal” scales, as follows.
We let

u(x, t) =
x

tr
U(x, tr), (7a)

h(x, t) =

(
2

b0

)(n+1)F1
[
(2n+ 1)[r(2n+ 1) + n]

n2(r + 1)

]nF1
(

µ0

∆ρ g

)F1 x(n+1)(1−k)F1

tr|tr|nF1−1
H(x, tr), F1 = 1 + r(n+ 1), (7b)

where H and U are dimensionless and tr = tc − t, being
tc the closure time, i.e. the time required for the current,
starting with the front at x0, to reach the origin. This
choice of a time relative to closure time makes it possible
to analyse separately the initial phase of current evolu-

tion, or ”pre-closure” in which tr > 0 and xf → 0, from
the subsequent ”post-closure” or ”levelling” phase, with
tr < 0 and with the current gradually increasing in level
having already reached the origin and xf = 0.
Substituting eqs.(7a–7b) into eqs.(4–6) yields

U |U |n−1
+

(n+ 1)(1− k)

F1
H |H|F1−1

+H |H|F1−2
x
∂H

∂x
= 0, (8a)

tr
∂(H|H|r)

∂tr
− n(r + 1)

F1
H|H|r − [n(1− k) + 2F1]

F1
H|H|rU − x

∂(H|H|rU)

∂x
= 0. (8b)

It is a nonlinear system of partial derivative equations in the two dependent dimensionless variables H and U
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and the independent dimensional variables x and tr. We
introduce the self-similar variable ξ = x/(ltr|tr|δ−1) that

couples x and tr, l being a dimensional parameter having
dimensions [l] = LT−δ. Inserting the similarity variable
into eqs.(8a–8b) gives

U |U |n−1
+H|H|F1−2ξH ′ +

(n+ 1)(1− k)

F1
H|H|F1−1 = 0, (9a)

δ(r + 1)ξH ′ +
n(r + 1)

F1
H + (r + 1)UξH ′ +HξU ′ +

[n(1− k) + 2F1]

F1
HU = 0, (9b)

where the prime indicates the derivative with respect to ξ and where the variable tr does not appear explicitely.
Eliminating ξ from the two equations results in

dH

dU
=

H|H|2F1−2[(n+ 1)(1− k)H|H|F1−1 + F1U |U |n−1
]

H|H|F1−1[(k + 1)F1U − (n+ 1)(1− k)(r + 1)δ + n(r + 1)]− (r + 1)(U + δ)F1U |U |n−1 , (10a)

d ln ξ

dH
= − F1

H|H|F1−2F1U |U |n−1
+ (n+ 1)(1− k)H|H|2F1−2

. (10b)

It is an autonomous system of ordinary differential equa-
tions (ODE), lacking, for the moment, the boundary con-
ditions. The solutions are represented by paths in the
phase space U − H. Not all paths are representative of
the physical behaviour of a current, but only some of
them connecting two singular (or critical) points.

The singular points correspond to the simultaneous ze-
ros of numerator and denominator of eq.(10a) , with a
further singular point (point C, see below) correspond-
ing to dU/dH = 0 for H → −∞. Amongst the singular
points, only points O, A, B and C in the following list
are of interest:

O : (H,U) ≡ (0, 0), (11a)

A : (H,U) ≡ (0,−δ), (11b)

B : (H,U) ≡

([
n(r + 1)

n(1− k) + 2F1

]n/F1
[

F1

(n+ 1)(1− k)

]1/F1

,− n(r + 1)

n(1− k) + 2F1

)
, (11c)

C : (H,U) ≡
(
−∞,

(r + 1)[(n+ 1)(1− k)δ − n]

(k + 1)F1

)
. (11d)

The origin O corresponds to null velocity and height
at tr = 0 (and to ξ → ∞); point A corresponds to the
moving front where h(xf (t), t) = 0, with xf the front po-
sition and xf (t = 0) = x0 (and to ξ = ξf ); point B from
an analytic point of view corresponds to the condition
d2H/dU2 ≡ dH/dU = 0, but it is unphysical since the
solution near it evolves like a spiral which indicates an
oscillatory behavior of the physical variables u and h, not
observed; point C represents the asymptotic flow condi-

tion during levelling (it also corresponds to ξ = 0). For
n = 1 and r = 0 point B corresponds to the value given
in11, where n in11 corresponds to our k. For r = 0 points
O, A, B, and C correspond to the points in14.

The expansion about the origin O, yields

U ≈ −
[
δ(1− k)(n+ 1)− n

F1δ

]1/n
H|H|F1/n−1; (12)
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the expansion about the front of the current A, yields

U ≈
[
[(1− k)n+ 2nr + 2(1 + r)]δ − n(1 + r)

F1(1 + r)δn

]
HF1 − δ;

(13)
the asymptotic expression for H → −∞ (point C) gives

U ≈ UC +
U2−n
C (1− k)(n+ 1)(3F1 − 2)

(1 + r)(Uc + δ)F1

1

H|H|3F1−3
,

(14)
where UC is the coordinate of the singular point C. The
description of the behaviour of the solution near the sin-
gular points, suggests that the pre-closure current evolu-
tion is described by an integral curve joining A and O,
the post-closure evolution by a curve joining O and C.

B. Integration of the model and numerical results

We used Mathematica20 for numerical integration in
the pre-closure time interval (t < tc) by adopting
eq.(10a), starting nearby the origin O and assuming that
U = −ϵ with the local expansion for H computed by in-
verting eq.(12), with ϵ = 10−5, and computing H(U) in
the interval U ∈ [−δ,−ϵ]. An initial value of δ was cho-
sen, with iterative modifications of this value and stop
criterion when H(−δ) < 10−3. The computed eigenval-
ues, named critical eigenvalues δc, are listed in table I of
Appendix A.

The post-closure interval (t > tc) evolution has been
integrated with the same equation (10a) used for the pre-
closure interval, but starting nearby point C where U =
UC − ϵ, with the expansion for H obtained by inverting
eq.(14), again with ϵ = 10−5, and computing H(U) in
the interval U ∈ [ϵ, UC − ϵ]. No iteration was required
since the value of δc was already known.
Figure 2ab shows the phase portrait of eq.(10a) with

the trajectories of a Newtonian current for the critical
eigenvalue δc = 1.74581 for r = 0.1, k = 0.6 and δc =
1.85331 for r = 1, k = 0.6. Continuous and dash dotted
curves describe the pre-closure and post-closure phases,
respectively. The pattern is similar but with the shape
of the curve during pre-closure with greater steepness at
the front (point A) for the case of r = 1, compared to
r = 0.1.

Figure 3ab shows the heteroclinic trajectories connect-
ing: i) point A and point O (continuous curves, pre-
closure) and ii) point O and point C (dashed curves,
post-closure or levelling) for n = 0.7, 1, 1.5, k = 0.6 and
increasing r values. The pattern is distinctly different
for increasing r, but the shape is rather similar for fluids
with different values of the fluid behaviour index n. The
results for larger values of k do not change significantly
the pattern (not shown).

Figure 4 shows the eigenvalues as a function of r for
two different k and three different n. The definition of
the front speed in dimensional variables gives

uf = − xf

tc − t
δc, (15)

which can also be expressed as

uf = −x0

tc
δc

(
1− t

tc

)δc−1

. (16)

The acceleration of the front is

af =
x0

t2c
δc(δc − 1)

(
1− t

tc

)δc−2

, (17)

which is always positive (hence, reduces the nega-
tive front speed) since δc > 1, and is decreas-
ing/constant/increasing in time for δc ⋛ 2; in the last
case, the acceleration approach +∞ for t → tc. The δc
value generally increases with r, which means that the
current front advances with a higher speed the greater
the increase in permeability upwards, and even greater
for shear-thinning fluids than for shear-thickening flu-
ids. Faster convergence of the channel (higher value of
k) again increases the speed of the front. The variation
is most evident for larger values of r. Shear-thickening
fluids and for k = 0.6 experience an initial reduction of
δc for r increasing from r = 0 (uniform permeability in
vertical), due to an interplay between rheology and cross-
section geometry.
Once the function H(U) has been computed, the inde-

pendent similarity variable ξ can be computed by first
mapping the domain of varying size ξ ∈ [ξf ,∞] into
ξ/ξf ∈ [1,∞], then integrating eq.(10b) starting from
the front of the current A with the boundary condition
ξ/ξf |U=−δc

= 1, equivalent to d ln(ξ/ξf )|U=−δc
= 0.

The origin O is reached for U → 0 at ξ/ξf → ∞.
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FIG. 2. Converging gravity current in a channel of width
b = b0x

kzr. Phase portrait of (10a) for n = 1 (Newtonian
fluid), k = 0.6, a) r = 0.1 with δc = 1.74581, and b) r = 1
with δc = 1.85331. The continuous blue curve refers to the
pre-closure phase, the dash-dotted green curve refers to the
post-closure (levelling) phase, the red vertical line indicates
the asymptote in the levelling phase, the red dashed curves
are the approximate solutions about points O and A.

FIG. 3. Converging gravity current in a channel of width
b = b0x

kzr. Shape of the heteroclinic trajectories in rescaled
coordinates for k = 0.6 and increasing r for (a) n = 0.7
(shear-thinning fluid), b) for n = 1 (Newtonian fluid), and c)
for n = 1.5 (shear-thickening fluid). Continuous curves refer
to pre-closure, dashed curves to post-closure (levelling) phase.
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FIG. 4. Converging gravity current in a channel of width
b = b0x

kzr. Eigenvalues representing the exponent of the sim-
ilarity variable ξ = x/[l(tc − t)δc ] for fluids with different flow
behaviour index n, in a channel with horizontal convergence
parameter k = 0.6, 0.8 and for increasing vertical divergence
parameter r.

A similar approach is adopted for the post-closure
phase, when the front of the current has reached the ori-
gin and a progressive levelling occurs (not shown).

Figure 5abc shows the current depth and velocity in
the pre-closure for different values of the fluid behaviour
index n, for k = 0.8 and for increasing value of the pa-

rameter r. Visualisations are not easy to interpret as
dimensionless variables scale nonlinearly with distance
from the origin. For example, the presence of a maxi-
mum does not indicate the reversal of the gradient of the
dimensional height of the current, which must be pos-
itive everywhere. However, we can grasp some salient
aspects. The increase in upward permeability favours
steeper wavefronts, the higher the fluid behaviour index
and the faster the horizontal convergence (not shown).
The average horizontal velocity, equal to −δc at the front,
increases faster for increasing r (and for increasing k, not
shown)

C. Numerical study of the pre-closure

A possible validation of the self-similar solution con-
sists of direct numerical integration of the mass con-
servation and momentum balance equations. Note that
this is not a verification of the goodness of the physi-
cal model, but only a validation of the goodness of the
semi-analytical results obtained in the phase space. By
inserting eq.(4) into eq.(6) and selecting the following ve-
locity and time scales:

u∗ =
n2(r + 1)

(2n+ 1)[(2n+ 1)r + n]

(
h∗

L

)1/n(
∆ ρg

µ0

)1/n(
b0h

∗rLk

2

)1/n+1

, t∗ =
L

u∗ , (18)

where L and h∗ are the horizontal and vertical length
scales, respectively, the evolution equation of the current
height in non dimensional form is

∂H̃r+1

∂t
=

1

Xk

∂

∂X

X2k+k/nH̃2r+1+r/n ∂H̃

∂X

∣∣∣∣∣∂H̃∂X
∣∣∣∣∣
1/n−1

 ,

(19)

where X = x/L and H̃ = h/h∗. For the simple case
of a constant volume, the integral mass conservation in
dimensional form is∫ L

xf

b0
r + 1

xkhr+1 dx = V0, (20)

where V0 is the volume of fluid; the corresponding dimen-
sionless formulation reads∫ 1

Xf

XkH̃r+1 dX = 1, (21)

where the vertical length scale becomes

h∗ =

[
(r + 1)V0

b0Lk+1

]1/(r+1)

. (22)

The boundary conditions are

H̃(Xf ) = 0,
∂H̃

∂X

∣∣∣∣∣
X=1

= 0. (23)

It is advantageous to map the time variable domain
[Xf , 1] into a fixed domain [0, 1] (see21) by introducing
the following transformation:

Y =
1−X

1−Xf (T )
0 < Y < 1. (24)

With this transformation, we eliminate some problems
arising in a variable domain of integration and simplify
the identification of the updated position of the front of
the current. Since H̃(Y (X,T ), T ), it results:

∂H̃

∂T

∣∣∣∣∣
X

=
∂H̃

∂T

∣∣∣∣∣
Y

+
∂H̃

∂Y

∣∣∣∣∣
T

∂Y

∂T
,

∂H̃

∂X

∣∣∣∣∣
T

=
∂H̃

∂Y

∣∣∣∣∣
T

∂Y

∂X
,

(25)
where the subscript indicates the constant independent
variable. Eq.(19) becomes
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FIG. 5. Current shape profiles and velocity profiles in the pre-
closure phase for k = 0.8, r = 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, a)
for shear-thinning fluid with n = 0.7, b) for Newtonian fluid
with n = 1, and c) for shear-thickening fluid with n = 1.5.

∂H̃r+1

∂T
=

Y Ẋf

1−Xf

∂H̃r+1

∂Y
+

1

[1− Y (1−Xf )]k
1

(1−Xf )1/n+1

∂

∂Y

[1− Y (1−Xf )]
2k+k/nH̃2r+1+r/n ∂H̃

∂Y

∣∣∣∣∣∂H̃∂Y
∣∣∣∣∣
1/n−1

 ,

(26)

where Ẋf is the front speed. The integral mass continuity
eq.(21) becomes:

(1−Xf )

∫ 1

0

[(1− Y (1−Xf )]
kH̃r+1dY = 1, (27)

and the boundary conditions become

H̃ (1) = 0,
∂H̃

∂Y

∣∣∣∣∣
Y=0

= 0. (28)
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FIG. 6. Comparison of the front position between the predic-
tions of self-similar theory (curves) and numerical simulation
(symbols). Note that the vertical scale is logarithmic to bet-
ter highlight the behaviour near closure, and that the results
of different simulations have been translated in the vertical
for an easy visualization.

Numerical integration is performed with an explicit
predictor-corrector scheme on a staggered grid, with the
non-linear terms calculated at intermediate points, start-
ing with an initial condition of the type

H̃(Y, 0) = a(1− Y s), (29)

where a and s are dimensionless coefficient. The initial
front speed is assumed equal to the velocity of the current
in the front cell, computed as

Ẋf

∣∣∣
T=0

= − H̃r+r/n

(1−Xf )1/n
X

k+k/n
f

∂H̃

∂Y

∣∣∣∣∣∂H̃∂Y
∣∣∣∣∣
1/n−1

. (30)

At each step, we iteratively calculate the updated value
of Xf from eq.(27) and then the updated front speed

as Ẋf = (Xf−new − Xf−old)/dT . A sensitivity anal-
ysis showed that a grid of 200 points guarantees grid-
independent results, with an initial integration interval
of dT = 10−5 progressively increased at a later stage of
propagation of the current.

Figure 6 shows the comparison between the self-similar
theory and numerical simulation. Note that in the initial
phase the results are divergent, while after a certain time
interval the self-similar regime is established with a good
overlap between the self-similar solution and the numeri-
cal simulation. Note also how in the terminal phase there
is a slight new difference between the two solutions of the
differential problem.

III. SUMMARY AND CONCLUSION

We conducted an analysis of gravity currents advanc-
ing towards the origin in a channel, or fracture, of varying

width and converging, with an upward increase in perme-
ability. Previous analyses, conducted for both Newtonian
fluids and more generically power-law fluids, had led to a
self-similar solution of the second kind, also experimen-
tally validated6,11,14.

Here we have extended the analysis to the case of het-
erogeneity in the vertical direction, which appears repre-
sentative of many real situations. The method adopted
is the search for integral paths in phase space, capable of
joining two singular points representing the front and an
origin at an indefinite distance, in the pre-closure phase,
and the origin and an asymptotic point corresponding to
the levelling, in the post-closure phase. These paths were
integrated numerically by introducing a parameter that
is part of the solution, referred to as the eigenvalue. The
value of the eigenvalue that allows joining the two points
is named critical eigenvalue.

From a numerical point of view, instabilities occur for
r ≈ 1. Numerical instability is often an indication of
physical instability, assuming the model is adequately
representative of the physical process. The approach of
the present analysis has been experimentally validated
for simpler geometries, but the condition of vertically
increasing permeability will require future experimental
verification. As is always the case when handling self-
similar solutions, there remains the problem of determin-
ing what is the range of validity of the solution22, which
although arising from the essential aspects of the prob-
lem, and thus being strongly based on the physics of the
problem, may be obscured by the initial and boundary
conditions in the initial phase, as well as by the ampli-
fication of perturbations in the terminal phase. In the
most unlucky cases, self-similar solutions either find no
space between the two phases, which overlap, or are so
unstable that they evolve rapidly without trace. This
definitely requires experimental validation although the
numerical integration of the differential problem shows a
good overlap with the self-similar solution.

The critical eigenvalue for the converging channel
flow is influenced by both the convergence parameter k
(higher eigenvalues for increasing k) and the vertical di-
vergence parameter r (generally increasing eigenvalues
for increasing r). The nature of the fluid (flow behaviour
index n) influences the flow regime much less than the
geometry of the cross-section. Although no analytical
limit values of the eigenvalue have been found, the critical
eigenvalue grows rapidly as k → 1 increases, apparently
unlimited.

A possible extension of the analysis is to include a
drainage at the bottom, in order to reproduce the com-
petition between bottom filtration and current advance-
ment in an anisotropic domain.



10

TABLE I. Eigenvalues computed for converging flow in a
channel of width b = b0x

kzr for different values of k, r and of
fluid behaviour index n.

k = 0.6 k = 0.8
r n = 0.7 1 1.5 n = 0.7 1 1.5
0 1.81536 1.78741 1.79013 3.07693 2.95562 3.01639

0.1 1.80080 1.74581 1.71002 3.07692 2.94956 3.00415
0.2 1.79616 1.72536 1.66862 3.08773 2.96177 3.00532
0.3 1.79868 1.71692 1.64606 3.11416 2.99268 3.02004
0.4 1.80750 1.71694 1.63474 3.16042 3.04440 3.05287
0.6 1.84383 1.73702 1.63350 3.33175 3.22400 3.17488
0.8 1.90788 1.78189 1.65280 3.64528 3.51672 3.34473
1 2.00565 1.85331 1.68959 4.11919 3.88741 3.54390
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