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Wide flow model for converging gravity currents and the effects of the flow1

resistance model on the propagation2
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(Dated: 16 September 2023)6

We are investigating flows in the viscous-buoyancy balance regime in a converging7

channel with a cross-section described by a power function y =∼ xkzr, where x8

and y are the streamwise and spanwise horizontal coordinates, respectively, and z9

is the vertical coordinate. We are interested in the different results depending on10

whether we use a simplified model of the flow resistance law, which varies depending11

on whether the height of the current is much greater/smaller than the channel width,12

or a somewhat more general model described by the Darcy-Weisbach equation in13

which the flow resistance law depends on the shape of the cross-section through14

the Fanning friction factor. The simplified models, one of which developed here is15

original and new, allow a self-similar solution of the second kind, unlike the general16

model. The general model, to the best of our knowledge applied for the first time to17

a generic cross-section described by a power function, requires numerical integration.18

However, a comparison of the front propagation of the gravity current according to19

the different models, performed by numerical integration of the differential problem,20

shows that the current assumes a self-similar arrangement as a good approximation21

for the general model. For some channel geometries, the three models give a very22

similar result, which results in a difficult attribution to a specific model based on23

experiments. The effects of anisotropy in the vertical direction of the channel cross-24

section are also highlighted by both the numerical and self-similar solutions.25

a)https://sandro.longo.unipr.it/
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I. INTRODUCTION26

Gravity currents (GCs), generated mainly by density differences of various kinds occurring27

in a flow domain, are a model for a wide range of natural phenomena and industrial processes28

for which the geometric and temporal scales are, to some extent, in a similarity condition.29

This condition favours mathematical description framing in problems that admit families30

of solutions. Geometric homotheticity, accompanied by temporal scaling, guarantees the31

possibility of reducing the number of variables involved with self-similar solutions. These are32

approximate solutions, reproducing some essential elements of the propagation process while33

neglecting other effects that play a role either in the initial stage or in the final stage. The34

pioneering analysis of Barenblatt1 introduced the concept of “intermediate asymptotics”, i.e.,35

asymptotics that are not valid too early or too late, but only in an intermediate interval.36

See also Longo2 for a description of the principles behind this concept.37

The availability of solutions, albeit approximate but known either analytically, or with38

the possibility of extracting some relevant properties of the physical process, such as the39

dependence of the front position on time, and the dependence of the current profile on space,40

allows analysis with very synthetic results that facilitate comparison with field experiments41

and ultimately simplify the interpretation. The book by Ungarish3 details several models of42

GCs grouped into classes and sharing the kind of the solution.43

The two main families of self-similar solutions are of the first kind and of the second44

kind, where the dimensional arguments in the former allow the identification of the self-45

similar variables, and the self-similar variables in the latter are identified only a posteriori,46

after the problem has been solved. For example, solutions for the propagation of two-47

dimensional and axisymmetric viscous GCs belong to the first family4. The second family48

includes convergent gravity flows (in addition to numerous other phenomena), analysed49

according to the scheme originally proposed by Gratton & Minotti5 and later extended to50

reproduce spatial variability in the properties of porous media6 or to account for drainage51

through a permeable substrate7. Other analyses of second-kind self-similar solutions have52

been previously provided by scholars8–15. The review in Zheng & Stone16 provides a detailed53

overview of the most relevant contributions.54

The proper use of self-similar solutions requires knowledge of their degree of approxi-55

mation, and of the extension of the interval defined as “intermediate asymptotic”. In this56
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respect, both the experimental measurements of Zheng et al.6 and Longo et al.15 and the57

numerical analyses in Ball et al.17, Ball & Huppert18 help to explore these aspects in more58

detail. However, the approximation of the solution is also compounded by the approximation59

of the model adopted, which makes it more difficult to identify deviations from the experi-60

mental results; the effects of capillarity, the curvature of the trajectories, the approximation61

adopted in the description of the flow field and the rheology of the fluid (for non-Newtonian62

fluids) are among these approximations.63

In detail, the flow of a current in a viscous regime in a channel with boundaries expressed64

by a power function can be computed by considering (i) the tangential stresses in the vertical65

planes to be dominant, if the width of the current is small compared to its height; (ii) the66

tangential stresses in the horizontal planes to be dominant, if the height of the current67

is small compared to its width19; and (iii) the tangential stresses in both horizontal and68

vertical planes to be relevant. For the sake of simplicity, Case (i) will be referred to as the69

“narrow flow model”, Case (ii) as the “wide flow model”, and Case (iii) as the “general70

model”. This nomenclature indicates that, for example, in fractures the narrow flow model71

is preferentially, but not exclusively, the most appropriate model: even in fractures close to72

the GC front where the height is of the same order as the width, the narrow flow model is73

only approximated. It is also understood that the general model is the most extensive of74

the three models although in the present analysis we neglect the variability of the Fanning75

coefficient as the filling level of the cross-section varies, as will be made explicit in the §II.76

While the differential problems resulting from the different approximations are similar,77

the numerical outcomes are different, and some aspects of the current propagation lead to78

different conclusions; we expect that a more general description of the flow field, relaxing79

some approximations, may lead to a differential problem without self-similar solutions.80

In this article, we will focus on these aspects, while also considering other aspects that81

generalize the previous literature. We include the variability of the domain in the vertical82

direction, which introduces a further degree of anisotropy to that represented by the con-83

vergence of the channel in the direction of flow. The analysis is carried out for converging84

flows of a Newtonian fluid in channels with geometry described by power functions.85

The manuscript is structured as follows. The model and the different flow resistance laws86

are described in §II. In §II B, we introduce the self-similar solution identification procedure87

for the case of a wide flow model, and in §II C, there is a description of the differential88
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FIG. 1. Schematic of a GC advancing towards the origin in a channel with boundaries described by

the function y = ±(b0/2)x
kzr, with a gap width b = 2|y| ≡ b0x

kzr and a top width of the current

W (x, t) = b(x, h(x, t)). a) Side view, b) top view, and c) cross-section.

problem and of the finite difference procedure for the case of a general model. In §III, we89

compare the results for the different flow resistance laws. Section IV contains the summary90

and the conclusions. The Appendix briefly describes the differential problem for the narrow91

flow model.92

II. THEORY93

A. Formulation of the model94

We consider a horizontal channel with a rigid-walled, impermeable cross-section described95

by a power function y = ±(b0/2)x
kzr, where b0 is a parameter of dimension [b0] = L1−k−r

96

controlling the width, and k and r are two dimensionless parameters controlling the variation97

in the streamwise x direction and in the vertical direction z, respectively; see the schematic98

in figure 1.99

A positive value of k indicates a divergent channel in the horizontal, which widens as x100

increases; values of 0 < r < 1 and r > 1 control the variation of the gap width in the vertical101
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direction, and correspond to a narrow fracture and a wide channel, respectively. As special102

cases, r = 0 corresponds to a rectangular section of width b0x
k; r = 1/2 corresponds to a103

parabola in general, and to a circular cross-section of radius b20x
2k/8 if the current width104

is smaller than the radius; r = 1 corresponds to a symmetrical triangular section, which is105

wide/narrow for large/small values of b0x
k. We assume that the streamflow variation of the106

cross-section is such that the component of stresses normal to the wall in the flow direction107

is negligible , and that the geometric scale along x is much larger than the geometric scales108

along y and z. Furthermore, the variations in the variables in the transverse y direction109

are zero, with a uniform sharp interface between the current and the ambient fluid in the110

y direction and with negligible effects of the surface tension. The viscosity of the intruding111

fluid is higher than the viscosity of the ambient fluid, and we do not expect Saffman-Taylor112

instabilities.113

We assume the classical Newtonian relation between shear stress and shear rate:114

τ = µγ̇, (1)115

where τ is the tangential stress, γ̇ is the strain rate and µ is the viscosity.116

Neglecting capillary effects and the curvature of the streamlines, the pressure within the117

current fluid domain is p = p0 + (ρ − ∆ρ)g(h0 − h) + ρg(h − z), 0 < z < h, where g is118

gravity and p0 is the pressure in the ambient fluid at z = h0, assumed to be constant. For119

low Reynolds number flows, we can neglect the inertial effects, and the balance is between120

the relevant normal and tangential stresses; hence,121

∂τzx
∂z

+
∂τyx
∂y

+
∂p

∂x
= 0, (2)122

with a driving pressure gradient equal to123

∂p

∂x
= ∆ρ g

∂h

∂x
. (3)124

At this point, we generally proceed by assuming that in the case of currents with a

height h much greater than the width W , with h ≫ W (narrow flow model), the horizontal

dynamics dominate since ∂τyx/∂y ≫ ∂τzx/∂z; in the opposite case, if h ≪ W (wide flow

model), the vertical dynamics dominate since ∂τyx/∂y ≪ ∂τzx/∂z. This simplifies eq. (2),

allowing direct integration of the velocity field. In the first case, for the narrow flow model,
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the streamwise velocity is equal to:

uN(x, y, z, t) = −
∂h

∂x

(
∆ρ g

µ

)
1

2

[(
b0x

kzr

2

)2

− y2

]
,

for

(
2|y|

b0xk

)1/r

≤ z ≤ h, |y| ≤
b0x

kzr

2
, (4)

after imposing the nonslip condition at the walls y = ±(b0/2)x
kzr and the null shear stress125

condition in the midplane y = 0, τyx|y=0 = 0 → ∂u/∂y|y=0 = 0. Averaging the velocity in126

the z and y directions yields127

uN(x, t) = −
∂h

∂x

(
b0x

k

2

)2(
∆ρ g

µ

)
βN(r)h

2r, βN(r) =
r + 1

3(3r + 1)
. (5)128

In the second case, for the wide flow model, the streamwise velocity is equal to:

uW (x, y, z, t) = −
∂h

∂x

(
∆ρ g

µ

)
1

2



[
h−

(
2y

b0xk

)1/r
]2

− (h− z)2


 ,

for

(
2|y|

b0xk

)1/r

≤ z ≤ h, |y| ≤
b0x

kzr

2
, (6)

after imposing the nonslip condition at the walls y = ±(b0/2)x
kzr and the null shear stress129

condition at the interface with the ambient fluid z = h, τzx|z=h = 0 → ∂u/∂z|z=h = 0,130

since the ambient fluid viscosity has negligible effects. Averaging the velocity in the z and131

y directions yields132

uW (x, t) = −
∂h

∂x

(
∆ρ g

µ

)
βW (r)h2, βW (r) = (r + 1)B [3, 1 + r] , (7)133

where B[. . .] is the beta function.134

Both models lead to adequately correct results in the domain in which the assumptions135

are valid.136

If the gradients of the tangential stresses along z and y are of the same order of magnitude,137

we can adopt the Darcy-Weisbach flow resistance equation, where the streamwise cross-138

section averaged velocity can be expressed as139

uG =

(
2g′RhJ

f

)1/2

, (8)140

where g ′ = (∆ρ/ρ)g is the reduced gravity, Rh = A/P is the hydraulic radius, i.e. the ratio141

between the cross-sectional area of the current A and the wetted perimeter P (the total142
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length of channel walls in contact with the liquid); J is the energy grade, energy dissipation143

per unit weight of fluid and per unit path length; and f is the Fanning friction factor. See,144

e.g., Chow20 for a more thorough definition of hydraulics terminology.145

In the laminar viscous regime, f = K/Re, where Re is the Reynolds number and K is a146

numerical coefficient that depends on the shape of the cross-section. The Reynolds number147

for Newtonian fluids is defined as148

Re =
4ρuGRh

µ
, (9)149

where ρ is the density and µ is the dynamic viscosity.150

In uniform flow, J = −∂h/∂x, eq. (8) becomes151

uG = −
∂h

∂x

(
∆ρ g

µ

)
8

K
R2

h. (10)152

The numerical value of the coefficient K can be calculated analytically for circular (K =153

16), rectangular (K = 14.227 − 24.0 for square ducts and very wide cross-section) and154

triangular symmetric sections (K = 12.474 − 13.153 as a function of the angle)21 in the155

presence of Newtonian fluids. These values have been verified experimentally and are in156

the range 12-24. For a rectangular cross-section (r = 0) with W ≪ h (narrow flow), the157

hydraulic radius equals half the local width, Rh = b0x
k/2, and comparing eq. (5) and158

eq. (10) yields K = 24. If the flow in the rectangular cross-section is wide, with W ≫ h,159

the hydraulic radius equals the height of the current, Rh = h, and comparing eq. (7) and160

eq. (10), again yields K = 24.161

The structure of the Darcy-Weisbach equation has been validated with several other162

cross-sections by numerically solving eq. (2), see Shah & London21. This means that the163

solution can be considered “exact” with a constant value of K independent of the Reynolds164

number. However, a possible source of error could be the variation of K as the degree of165

filling of the cross-section changes.166

The hydraulic radius for a cross-section with the boundaries described by y = (b0/2)x
kzr167
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FIG. 2. Ratio χ = Rh/h between the hydraulic radius and the height h of the current for different

values of r as a function of W/h, where W is the top width of the current.

is expressed as Rh = hχ (ζ, r), where χ is a dimensionless coefficient equal to168





χ =
ζ

(r + 1)
√

1 + ζ2 + (r2 − 1) 2F1

[
1

2
,

1

2r − 2
, 1 +

1

2r − 2
,−ζ2

] , if r > 1,

χ =
ζ2(2− r)

(r + 1)(2− r)ζ
√

1 + ζ2 + (r2 − 1) 2F1

[
1

2
,

r − 2

2(r − 1)
;
4− 3r

2− 2r
;−

1

ζ2

] , if 0 ≤ r ≤ 1,

(11)169

where ζ = r(W/h)/2, W = b0x
khr is the top width of the current and 2F1[. . .] is the170

hypergeometric function.171

Figure 2 shows the coefficient χ = Rh/h as a function ofW/h for different values of r. The172

asymptotic value for W/h → ∞ is equal to 1/(1 + r); hence, the computed flow resistance173

for a given gradient pressure is generally higher if the hydraulic radius is considered instead174

of the height of the current, with a higher flow depth and a reduced speed of the current.175176

Substituting the expression for the hydraulic radius in eq. (10) yields177

uG(x, t) = −
∂h

∂x

(
∆ρ g

µ

)
βG(K)h2χ2, βG(K) =

8

K
. (12)178

The continuity equation for the channel is179

∂A

∂t
+

∂(Au)

∂x
= 0, (13)180

which, for a power function cross-section, becomes181

∂hr+1

∂t
+

1

xk

∂(xkhr+1u)

∂x
= 0, (14)182
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where, for simplicity, we have eliminated the overline for the variable u.183

At this point, we can check that a self-similar solution of the first kind exists for flow184

from the origin, with positive velocity; see Longo et al.22.185

For flows towards the origin, with negative velocity, an analytical scaling of the variables186

to combine them in self-similar form is not available. A possible solution for the two cases187

of narrow and wide flow models consists of searching for a self-similar solution of the second188

kind. Here, we consider the case of a wide flow model first; the case of a narrow flow model189

has already been treated in Longo23 and is briefly described in Appendix A. Then, we190

consider a cross-section where both tangential stresses are relevant, and the cross-section191

average velocity of the current is expressed by eq. (12).192

B. The wide flow model193

For the case of a wide flow model, following the phase space analysis detailed in Gratton194

& Minotti5 and the procedure described in Zheng et al.6, we assume that the variables u195

and h scale as196





uW (x, t) =
x

tr
U(x, tr),

h(x, t) =

(
µ

∆ρ g

)1/3
1

tt|tr|−2/3

(
x2H(x, tr)

βW

)1/3

,

(15a)

(15b)

where tr = tc − t and tc is the closure or touchdown time (time when the front of the

current reaches the origin) and where U and H are dimensionless. A positive tr refers to the

preclosure phase, with part of the channel still dry, and a negative tr refers to the postclosure

or levelling phase, with the entire channel occupied by the current and the fluid progressively

filling up to a horizontal uniform level. Inserting eqs. (15a–15b) into eqs. (7–14) yields




3U + 2H + x
∂H

∂x
= 0,

(r + 1)H − (r + 1)tr
∂H

∂tr
+ 3xH

∂U

∂x

+ (r + 1)xU
∂H

∂x
+HU [3(k + 1) + 2(r + 1)] = 0.

(16a)

(16b)

Define the dimensionless variable ξ = x/(ltr|tr|
δ−1), where l is a coefficient having dimension197

[l] = LT−δ and where δ is the unknown exponent to be determined as a part of the solution,198
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and insert it into eqs. (16a–16b), to yield199





3U + 2H +
dH

d ln ξ
= 0,

(r + 1)H + δ(r + 1)
dH

d ln ξ
+ 3H

dU

d ln ξ

+ (r + 1)U
dH

d ln ξ
+HU [3(k + 1) + 2(r + 1)] = 0,

(17a)

(17b)

where the symbol of partial derivative is changed to total derivative since H and U are a

function of ξ only. Equations (17a–17b) can be written as





dH

dU
=

3H(3U + 2H)

g(H,U)
,

d ln ξ

dH
= −

1

3U + 2H
,

where g(H,U) = H[3(k + 1)U − 2δ(r + 1) + r + 1]

− 3(r + 1)(δ + U)U.

(18a)

(18b)

(18c)

Equations (18a–18b) are an autonomous system of ordinary differential equations (ODEs)

where the solutions are represented by paths in the phase space U − H connecting two

singular points that correspond to the boundary conditions. By setting the numerator and

denominator of eq. (18a) to zero and infinity, respectively, we find six singular points. The

three points in the following list are finite:





O : (H,U) ≡ (0; 0),

A : (H,U) ≡ (0;−δ),

B : (H,U) ≡

[
3(r + 1)

2(5 + 2r + 3k)
;−

r + 1

5 + r(3k + 1)

]
.

(19a)

(19b)

(19c)

The other three points are at infinity:





C : (H,U) ≡

[
−∞;

(r + 1)(2δ − 1)

3(k + 1)

]
,

D : (H,U) ≡ (0;∞),

E : (H,U) ≡ (∞;∞).

(20a)

(20b)

(20c)

Points O and A represent the relevant boundary conditions for a GC that, at the front200

x = xf , has null height and advances with a dimensionless velocity U = −δ (see Gratton201
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& Minotti5); hence, the integral path during the preclosure phase should connect O and202

A. The approximate integral curve in the neighbourhood of O during the preclosure phase203

(H > 0 and U < 0) is204

U ≈ −
2δ − 1

3δ
H, (21)205

which requires δ > 1/2. The approximate integral curve in the neighbourhood of A is206

U ≈
[δ(k + 2) + (δ − 1)r − 1] + δ(2k + r + 3)

3δ(r + 4)
H − δ, (22)207

which requires δ > (r + 1)/(5 + 2r + 3k); this last condition is always satisfied if δ > 1/2.208

Point C represents the origin in an asymptotic spreading GC with no inflow at the origin;209

hence, the integral path connecting O and C describes the postclosure (levelling) phase. In210

the neighbourhood of C, the approximate integral curve is211

U ≈
(r + 1)UC(δ + UC)

(3 + k)

1

H
+ UC , (23)212

where UC is the velocity in C.213

The other points are not of specific interest for the present analysis.214

1. Integration of the ODEs215

Integration of eq. (18a) was performed in Mathematica24 for the preclosure phase, with the216

function NDSolve. The fastest way to perform the calculations consists of (i) integration217

starting nearby O, in the quadrant U < 0, H > 0 for U in the interval [−ϵ,−1.1(δ/2)]218

with ϵ = 10−3 − 10−4, tracing the first partial solution H+(U, δ); (ii) integration starting219

nearby A, for U in the interval [−0.9(δ/2),−δ + ϵ], again with ϵ = 10−3 − 10−4, tracing the220

second partial solution H−(U, δ). The two solutions H+(U, δ) and H−(U, δ) are parametric221

in the unknown δ; therefore, with the FindRoot algorithm, we find the value of δ such that222

H+(−δ/2, δ) = H−(−δ/2, δ). The algorithm is quite fast and allows the critical eigenvalue223

δc (i.e., the value of the exponent δ that allows to satisfy the differential problem) to be224

calculated with the desired accuracy.225

Figure 3 shows the critical eigenvalues computed for varying r and k. The values for226

r = 0 and k = 1 correspond to an axisymmetric converging GC, with the critical eigenvalue227

δc = 0.762035 already computed in Longo et al.15.228
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FIG. 3. Eigenvalues for a Newtonian fluid advancing towards the origin of a channel of width

b = b0x
kzr, for r = 0, 1, ..., 6. The green symbol corresponds to δc for an axisymmetric GC.

The inset shows the critical eigenvalues for k → 0.

The postclosure (levelling) branch can be integrated directly from the expansion in the229

neighbourhood of point C of eq. (18a), making use of the δc eigenvalue identified for pre-230

closure. For both phases, the calculation of H(U) is followed by the calculation of ξ(U) by231

integrating eq. (18b). By inversion, U(ξ) and H(ξ) are obtained. Figure 4 shows the integral232

paths for two different groups of parameters. The scenario is identical for different groups233

of parameters, except for the scaling of the critical points.234

Figure 5 shows the dimensional profiles of the GC computed for different combinations235

of the parameters. Note that the faster the front is, the greater r, as is evident from figure 3236

at least for k < 10. It is intuitive, since a cross-sectional width that grows faster with z237

favours less drag.238239

The analysis of the expansion of the differential problem near the critical points gives an240

indication of the range of variability of the eigenvalues. Inserting the expansion of H near241

the origin, eq. (21), into eq. (18b) and integrating, yields242

H ≈ Cξ−1/δc , (24)243

and, in dimensional variables244

h ∝ x(2δc−1)/(3δc), (25)245
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FIG. 4. Integral path for a GC of a Newtonian fluid advancing in a converging channel with

k = 2, a) in a rectangular cross-section (r = 0), and b) in a triangular cross-section (r = 1). The

continuous green curve refers to the preclosure phase, and the dash-dotted blue curve refers to

the levelling phase. The dash-dotted curves represent the expansion in the neighbourhood of the

critical points. The scenario is repeated identically for each parameter combination, and only the

positions of the critical points are different.

FIG. 5. Computed profiles of the current with the front position at tr = 5 s. The profiles refer to a

current with the front position xf = 75 cm at tr = 50 s for different combinations of the parameters

r and k. The fluid is Newtonian with viscosity µ = 0.5Pa s and ∆ρ = 1256 kg m−3.

which is time independent. Since dh/dx > 0, for x → ∞, the results again show that246

δc > 1/2. Inserting the expansion of H near the asymptotic critical point C, eq. (23), into247

eq. (18b) and integrating yields248

H ≈ Cξ−2, (26)249
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and, in dimensional variables,250

h ∝ (−tr)
(−2δc−1)/3, (27)251

which is space independent. The negative sign for tr stems from the fact that we are in252

the levelling phase, with tr < 0. Imposing that during the levelling phase the condition253

dh/dt > 0, equivalent to dh/dtr < 0, yields δc < 1. The combination of the constraints on254

the critical eigenvalue gives 1/2 < δc < 1.255

The dimensional speed and acceleration of the front are equal to256

uf = −
x0

tc
δc

(
1−

t

tc

)δc−1

, af =
x0

t2c
δc(δc − 1)

(
1−

t

tc

)δc−2

, (28)257

where x0 is the front position at time t = 0. For δc > 1, the front of the current accelerates,258

i.e., the modulus of the negative front speed decreases, while for δc < 1, the opposite is259

true. The wide flow model always predicts decelerated currents (the front speed increases260

in time), while the narrow flow model predicts accelerated currents except for r > 0, where261

it admits a deceleration for small k.262

C. The general model (Darcy-Weisbach)263

In the case where none of the tangential stresses is dominant, the analysis of the prop-264

agation of the current leads to a differential problem not admitting a self-similar solution,265

which requires numerical integration. We do not expect a self-similar behaviour, since the266

structure of the equation precludes the identification of a group of transformations in which267

it is invariant.268

Inserting eq. (12) in eq. (14) yields269

∂hr+1

∂t
=

1

xk

∂

∂x

[(
∆ρ g

µ

)
βG(K)χ2xkhr+3∂h

∂x

]
. (29)270

If we select the following velocity and time scales:271

u∗ =
8

K

(
∆ρ g

µ

)
h∗3

L
, t∗ =

L

u∗
, (30)272

where L and h∗ are the horizontal and vertical length scales, respectively, eq. (29) can be273

written in dimensionless form as274

∂H̃r+1

∂T̃
=

1

X̃k

∂

∂X̃

[
χ2X̃kH̃r+3∂H̃

∂X̃

]
, (31)275
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where H̃ = h/h∗, X̃ = x/L, T̃ = t/t∗. The coefficient χ is expressed by eqs. (11) but with276

a dimensionless argument computed as follows. The ratio between the top width of the277

current and the height can be expressed as b̃0X̃
kH̃r−1 with278

b̃0 = b0L
kh∗r−1, (32)279

Hence, the dimensionless value for ζ is ζ̃ = rb̃0X̃
kH̃r−1/2.280

The mass conservation in integral dimensional form for the simple case of a constant281

volume of the current is282 ∫ L

xf

b0
r + 1

xkhr+1 dx = V0, (33)283

where V0 is the fluid volume; the corresponding dimensionless formulation reads284

∫ 1

X̃f

X̃kH̃r+1 dX̃ = Ṽ0, (34)285

where Ṽ0 = (r + 1)V0/(̃b0h
∗2L).286

The boundary conditions are287

H̃(X̃f ) = 0,
∂H̃

∂X̃

∣∣∣∣∣
X̃=1

= 0, (35)288

where X̃f is the dimensionless front position.289

The integration is performed with an explicit predictor-corrector scheme on a staggered290

uniform grid, with the nonlinear terms calculated at intermediate points, starting with the291

following initial condition:292

H̃(X̃, 0) = a

(
X̃ − X̃f0

1− X̃f0

)s

, X̃f0 < X̃ < 1, (36)293

where a and s are dimensionless and X̃f0 is the initial front position. A sensitivity anal-294

ysis showed that a grid of 200 points guarantees grid-independent results, with an initial295

integration interval of ∆T̃ = 10−5 progressively increasing at a later stage of propagation296

of the current. Most computations were performed with a grid of 400 points to achieve an297

adequate resolution of the front position.298

Figure 6 shows the GC profiles calculated at different times, with closure at T̃ = 4.119.299
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FIG. 6. Non-dimensional profiles of the GC as a result of the finite difference integration for the

general model. Newtonian fluid in a converging channel with r = 0, k = 0.5, b̃0 = 1; grid with 400

knots and ∆T̃ = 10−5.

III. COMPARISON OF THE RESULTS FOR DIFFERENT FLOW300

RESISTANCE MODELS301

Figure 7 shows the critical eigenvalues predicted by the narrow- and wide-flow models.302

For k → 0 and r = 0, both models predict δc = 1; for r > 0, the wide flow model predicts303

δc = 1, while the narrow flow model predicts δc < 1. This means that the choice of the304

model has little effect on the result for small values of k, i.e., for flows advancing in channels305

with a limited convergence index, while it makes a large difference for increasing values of k.306

The green bullets are the points where the two models share the critical eigenvalue δc ≈ 1307

for r = 0, 0.1, ..., 0.5. The narrow flow model diverges for k → 1, while the wide flow model308

always predicts a finite δc.309

Figure 8 shows the front position versus time for a converging GC of a Newtonian fluid310

advancing in a rectangular cross-section channel with r = 0, k = 0.1, 1.2, 3.0. The continuous311

and dashed curves refer to the assumption of u = uG and u = uW , respectively, and the312

starting current profile is parabolic in the range 0.7 < X < 1, with Xf0 = 0.7. For313

comparison, self-similar solutions with δc = 0.963..., 0.736..., 0.607... are shown. There is a314

fairly good correspondence between the self-similar solution and the result of the numerical315

finite difference integration for a wide flow, with a progressive adjustment of the solution316

after a suitable time interval from the start of the simulation. The results for the case of a317

general model, where the hydraulic radius controls the flow resistance, indicate that there is318

a wide range in which the dependence of the position of the current front on time is similar319
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FIG. 7. Critical eigenvalues predicted by the narrow and wide flow models. The continuous and

dashed curves refer to r = 0 and r = 0.5, respectively. The green bullets indicate the common

critical eigenvalues for the two models for r = 0, 0.1, ..., 0.5. The yellow hatched area is for accel-

erated flows, with a reduction in the modulus of the negative velocity of the front. The other two

hatched areas indicate the range of allowed variability of the critical eigenvalue.

to that predicted by the self-similar solution, although the differences are evident mainly in320

the early stage, when the initial condition still affects the propagation dynamics, and in the321

late stage, when the front is reaching the origin.322323

Similar results are obtained for different shapes of the cross-section; see figure 9. This324

evidence, albeit numerical, indicates that the approach of finding a self-similar solution325

appears to be advantageous because the flow resistance law plays a minor role in many326

configurations. Apart from the numerical value of the coefficients, what most distinguishes327

the propagation with a general flow resistance law from the simplified case of narrow and328

wide flow models, is the joint presence in the diffusion term of eq. (31) of the hydraulic329

radius and the height of the current, where the former is implemented with a quadratic330

exponent and the latter with an exponent equal to r+1; the flow resistance law for currents331

in narrow or wide flows only considers the height of the current.332333

The hydraulic radius for a cross-section in power function form depends on the ratio of334

the top width to the current height, a value that in dimensionless form is closely related to b̃0.335
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FIG. 8. Converging GC of a Newtonian fluid in a channel of gap width b = b0x
kzr, with r = 0

(rectangular cross-section), k = 0.1, 1.2, 3.0 and b̃0 = 1. Comparison between the front position

computed by finite difference integration assuming that u = uW (dashed curves) and assuming

that u = uG (continuous curves). The self-similar solutions (represented by the straight black

lines) have critical eigenvalues δc = 0.963..., 0.736..., 0.607.... The curves are scaled in the vertical

direction for better visualization.

For increasing values of b̃0, the hydraulic radius tends to approach its maximum asymptotic336

value faster. This value coincides with the height for the rectangular cross-section (r = 0),337

i.e., it tends to h/(1+ r) for a generic value of r, see figure 2. Figure 10 shows the results of338

finite difference numerical integration for a rectangular cross-section and for increasing values339

of b̃0, corresponding to an average hydraulic radius that is increasingly close to the height340

of the GC. Although the results differ, an average slope not dissimilar to that predicted by341

the self-similar solution for the wide flow model can be observed.342343

Figure 11 shows the results of the finite difference integration of the three models and344

the self-similar solution. The values of the parameters refer to the last of the green bullets345

visible in figure 7, which correspond to an equal critical eigenvalue for both the wide- and346

narrow-flow models. The results show a good overlap between the three models and the347

self-similar solution.348349
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FIG. 9. Converging GC of a Newtonian fluid in a channel of gap width b = b0x
kzr, with

r = 0.8 − 1.2, k = 0.8 − 1.2 and b̃0 = 1. Comparison between the front position computed

by finite difference integration assuming that u = uW (dashed curves) and u = uG (continuous

curves). The self-similar solutions (represented by the straight black lines) have critical eigenval-

ues δc = 0.855..., 0.807..., 0.839..., 0.788. The curves are scaled in the vertical direction for better

visualization.
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FIG. 10. Converging GC of a Newtonian fluid in a channel of gap width b = b0x
kzr, with r = 0,

k = 0.5 and b̃0 = 0.07 − 0.8. The symbols are the numerical results for the general model. For

comparison, the slope predicted by the self-similar solution of the wide flow model is shown (straight

black line).

FIG. 11. Converging GC of a Newtonian fluid in a channel of gap width b = b0x
kzr, with r = 0.5

and k = 0.145. The results of the numerical integration for the three models and the self-similar

solution (straight black line), with a common critical eigenvalue δc = 0.958..., are shown.
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IV. SUMMARY AND CONCLUSION350

We analysed the behaviour of converging viscous currents in channels with the boundary351

described by a power function, adopting three different flow resistance models, namely, (i)352

a wide flow model (new and original), (ii) a narrow flow model, and (iii) a general model353

(new and original in its application to a GC in a generic power function cross-section). We354

assume that the cross-section is convergent towards the origin and has a varying width in355

the vertical direction. This last aspect is new and original.356

(i) Previous analyses, conducted for converging GCs both for Newtonian fluids and power-357

law fluids with a narrow flow model and gap width b ∼ xk, led to a self-similar solution358

of the second kind, with experimental validation6,9,15. With the same narrow flow359

model, a self-similar solution of the second kind also reproduces the case where the360

cross-section varies vertically, with gap width b ∼ xkzr; see Longo23. The critical361

eigenvalue for the narrow flow model is in the range 1/(2 − 2k) < δc < 1/(1 − k) for362

Newtonian fluids, and the parameter r, which controls the variation of the section in363

the vertical direction, does not intervene in the definition of this range. Note that the364

critical eigenvalue increases with k, and that for k → 1 the critical eigenvalue tends to365

infinity, a singularity presumably due to the inappropriateness of the scheme when the366

channel walls diverge more than linearly. The converging GCs framed in a narrow flow367

model are generally accelerated, with the negative front velocity reducing the modulus368

during propagation. When r > 0 and for sufficiently small k, the flows are decelerated.369

(ii) Here, we demonstrate that the wide flow model also leads to a self-similar solution of370

the second kind. The critical eigenvalue is in the range 1/2 < δc < 1 for Newtonian371

fluids. Conversely, this implies that the converging currents framed in the wide flow372

model are always decelerated, with the negative front velocity increasing in modulus373

during propagation, although with a deceleration approaching zero. The wide flow374

model has so far only been applied to the case of converging circular GCs, for which375

axial symmetry dictates, within the limits of approximations, that the most relevant376

stress gradient is that in the vertical direction, i.e. a dominant dynamics in the vertical.377

The extension to the case of flows in converging channels (coinciding with those with378

axial symmetry for k = 1 and r = 0) shows that the critical eigenvalues decrease as k379
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increases and that are always bounded and without singularities.380

(iii) The general model leads to a nonlinear differential diffusion equation that does not381

admit a self-similar solution. However, numerical integration shows that the evolution382

of the front follows to some extent that predicted by the self-similar solution, except383

for the initial and final phases of propagation.384

In particular, for r ≲ 0.5 and for small values of k, the three models tend to give very385

similar results, with δc ≈ 1 for the two self-similar solutions.386

The results provide a fairly clear perspective on the interpretation of experimental results387

compared to theoretical models. In fact, GCs very often propagate partly according to the388

narrow flow model and partly according to the wide flow model, and only very rarely can389

their dynamics be attributed to a single specific model. Nevertheless, the experimental390

results are generally in good agreement with the theory. This is apparently also because391

the general model reproduces fairly well the results of the narrow and wide flow models to392

a greater or lesser degree of approximation, and the expected approximation is better for393

smaller the value of k and r.394

The mathematical results appear to be quite consistent and coherent, but an experimental395

verification is needed. In this sense, the recommendations in Ghodgaonkar25 on the need396

to design experiments in such a way as to extend the time interval between tsim, the onset397

of self-similarity, and the touchdown time tc, point to the desirability of more rigorous398

experimental validation, with experiments that are clearly framed in one of the two regimes399

that allow self-similarity.400
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Appendix A: The analysis for a narrow flow model416

Using the same methodology as that used for the wide flows, we obtain the following417

system of ODEs:418





dH

dU
=

H|H|4r[2(1− k)H|H|2r + (2r − 1)U ]

H|H|2r[(k + 1)(2r − 1)U − 2(1− k)(r + 1)δ + r + 1]− (r + 1)(U + δ)(2r − 1)U
,

d ln ξ

dH
= −

(2r − 1)

H|H|2r−1(2r − 1)U + 2(1− k)H|H|4r
.

(A1)419

The analysis and the procedure for the solution are the same as that for wide flows.420
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