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We present a theoretical and experimental analysis of axisymmetric gravity currents
of power-law fluids in homogeneous porous media. The non-Newtonian shear-thinning
fluid is a mixture of water, glycerol and Xanthan gum (n = 0.33–0.53), and it is
injected into a porous layer of glass beads (d = 1–3 mm). We compare experiments
conducted with constant (α = 1) and time-increasing (α = 1.5 and 2.0) influxes to
theoretical self-similar solutions obtained by the numerical integration of the nonlinear
ordinary differential equation that describes one-dimensional transient motion. The
theoretical analysis is confirmed by experimental data. In addition, the selection of
the most appropriate expression for the tortuosity factor and the choice of the correct
range of shear stress for the determination of the rheological parameters are shown to
be crucial to obtaining a good fit between the theory and experiments.
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1. Introduction

Gravity-driven flows in porous media are ubiquitous in environmental and industrial
applications, and have been investigated in both the laboratory and in numerous
natural contexts. There is a large amount of literature that covers the theoretical
analyses and experiments (for a review, see Simpson 1982; Huppert 1986; Ungarish
2010) that pertains to two-dimensional and axisymmetric geometries. In particular,
fluid exchanges with geological porous media in a radial geometry have received
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much attention in connection with groundwater exploitation or remediation, fluid
storage in suitable geological units, and reservoir engineering. In several cases, the
injected/extracted fluid needs to be treated as non-Newtonian; typical examples include
foams and solutions used in enhanced oil recovery, environmental contaminants with
nonlinear characteristics, complex substances that are injected into aquifers to act as
carriers for remediation agents, and muds that are employed for lubrication in well
drilling operations. In a number of instances, the fluid’s rheological behaviour is
properly described by a Cross or Carreau–Yasuda model (Bird, Stewart & Lightfoot
2002); additionally, this behaviour can be approximated over a limited range of shear
rates by the simpler Ostwald–DeWaele model (Bird et al. 2002). A study of thin
axisymmetric gravity currents of power-law fluids with rheological indices n in porous
media was undertaken by Di Federico, Archetti & Longo (2012), who derived a
similarity solution under the assumption of an instantaneous or maintained injection
of a fluid volume proportional to tα, where the asymptotic rate of spreading was
∝ t(α+n)/(3+n). This solution generalized the results of Lyle et al. (2005). A similar
approach was adopted by Pascal & Pascal (1993) and Bataller (2008), who analysed
the case of an assigned constant or time-varying level at the origin. In all of these
approaches, transient analysis leads to a class of self-similar solutions of a nonlinear
advection–diffusion differential equation that has a negative spatial gradient of the free
surface in the radial direction. A wider class of self-similar solutions is envisaged
for non-Newtonian power-law fluids that spread radially in porous media, and such
solutions have already been found for Newtonian fluids (see Chertock 2002).

In this paper, we present an experimental validation of the theoretical predictions
for the axisymmetric gravity currents of power-law fluids in porous media. In the
next section, the theoretical developments for a current propagating in a homogeneous
medium under a shallow water approximation are summarized. Section 3 describes
both the experimental setup and the conducted tests and interprets the results. In § 4,
the implications of the correct choice of the rheological parameters are discussed.

2. Theory

Consider a non-Newtonian fluid with rheological behaviour described by a power-
law model for which the shear stress is given by τ = mγ̇ |γ̇ |n−1, where m and n are
the consistency and flow behaviour indices, respectively, and γ̇ is the shear rate. The
fluid has a uniform density ρ and is released into a homogeneous porous medium
that is saturated with a fluid of uniform density ρ − 1ρ. The bottom of the domain
is horizontal and impermeable, and the intruding fluid is injected along the vertical
axis of the cylindrical coordinate system; this setup is sketched in figure 1, where r
and z are the radial and vertical coordinates, respectively. Because only axisymmetric
flows are considered, the tangential coordinate is not of interest. The interface of the
intruding current with the ambient fluid is described by the function z = h(r, t) and
extends from the origin to a radius indicated by rN(t).

For a non-Newtonian power-law fluid, the flow law relating the pressure p and
Darcy velocity u can be expressed as:

∇p− ρg=−µeff

k
|u|n−1u (2.1)
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FIGURE 1. A sketch of an axisymmetric gravity current intruding into a saturated
porous medium.

where g is the gravitational acceleration, µeff /k is the inverse of the mobility, µeff is
the effective viscosity and k is the permeability. The mobility is given by

k

µeff
= 1

2Ct

1
m

(
nφ

3n+ 1

)n(50k

3φ

)(n+1)/2

(2.2)

where φ is the porosity and Ct = Ct(n) is the tortuosity factor, which can be expressed
in several different ways (for a review, see Shenoy 1995). According to Pascal (1983),
the tortuosity has the following expression, which was used here to analyse the
experimental data:

Ct = (25/12)(n+1)/2. (2.3)

If we assume that there is a hydrostatic pressure distribution within the intruding fluid
and neglect both the dynamics of the ambient fluid and the surface tension effects, the
Dupuit approximation (Bear 1972) allows us to express the velocity in (2.1) as

u(r, t)=−(Λ1ρg)1/nk(1+n)/(2n)

∣∣∣∣∂h

∂r

∣∣∣∣1/n−1
∂h

∂r
(2.4)

where

Λ(φ,m, n)= 1
2Ct

(
50
3

)(n+1)/2( n

3n+ 1

)n
φ(n−1)/2

m
. (2.5)

The mass balance equation is

1
r

∂

∂r
(ruh)+ φ ∂h

∂t
= 0, (2.6)

and global continuity requires

2πφ
∫ rN (t)

0
rh(r, t) dr = Qtα, (2.7)
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where both Q and α are constants. The following boundary condition is imposed at
r = rN(t):

h(rN(t), t)= 0. (2.8)

By substituting (2.4) into (2.6) and introducing both a velocity scale v∗ =
(Λ1ρg)1/nk(1+n)/2n/φ and a time scale t∗ = (Q/(φv∗3))1/(3−α), (2.6)–(2.8) can be recast
for α 6= 3 as

1
R

∂

∂R

(
RH

∂H

∂R

∣∣∣∣∂H

∂R

∣∣∣∣1/n−1
)
− ∂H

∂T
= 0, (2.9)

2π
∫ RN (T)

0
RH(R,T) dR= T α, (2.10)

H(RN(T),T)= 0, (2.11)

where T,R,RN(T) and H are dimensionless variables. The special case α = 3 requires
a different non-dimensionalization and is discussed in Di Federico et al. (2012). In the
general case, (2.9)–(2.11) admit the following similarity solution:

H(R,T)= ηn+1
N T (α(n+1)−2n)/(3+n)ψ(ζ ), ζ = η/ηN, (2.12)

where the new variable is

η = RT−(α+n)/(3+n), (2.13)

and ηN is its value at RN . By substituting (2.12) and (2.13) into (2.9), a nonlinear
ordinary differential equation for the function ψ(ζ ) is obtained:

(ζψψ ′|ψ ′|1/n−1
)
′ + n+ α

3+ n
ζ 2ψ ′ − α(n+ 1)− 2n

3+ n
ζψ = 0, (2.14)

where the prime indicates d/dζ . Furthermore, the global continuity equation (2.10)
transforms into

ηN =
(

2π
∫ 1

0
ζψ(ζ ) dζ

)−1/(3+n)

, (2.15)

and the boundary condition (2.8) becomes

ψ (ζ = 1)= 0. (2.16)

For α = 0, (2.14) and (2.15) have the analytical solutions

ψ(ζ )= nn

(n+ 1)(n+ 3)n
(
1− ζ n+1

)
, (2.17)

ηN =
[
π

nn

(n+ 3)n+1

]−1/(3+n)

, (2.18)

which, for n = 1, reduce to the solutions reported in Lyle et al. (2005). For a generic
value of α, the solution is obtained by numerical integration, and a necessary second
boundary condition can be obtained by developing the asymptotic solution of the
Frobenius series near the current tip (ζ = 1):

ψ ′|ζ→1 =−
(
α + n

3+ n

)n

. (2.19)

731 R2-4



Power-law non-Newtonian axisymmetric porous gravity currents

0.3

0.2

0.2 0.4 0.6 0.8 1.0

0.1

0

1.2

0.8

0.4

0

1.5

1.3

1.1

0.9
0.5 1.0 1.5 2.0 2.5 3.00

0.2 0.4 0.6 0.8 1.0

(a)

(c)

(b)

L2005

FIGURE 2. Numerical computation of the thickness profile ψ of the self-similar solutions of
an axisymmetric gravity current for shear-thickening (dashed red line), Newtonian (solid blue
line), and shear-thinning (dot-dashed line) fluids for (a) a constant volume (α = 0) and (b) a
constant-flux release (α = 1.0). (c) The similarity variable at the current front ηN . The solution
for n= 1 reduces to the line that was derived in Lyle et al. (2005) (dotted line).

Figure 2 shows the thickness profile ψ(ζ ) and the dimensionless position ηN of the
front end of the current, which is computed numerically for different values of n
and α. The results indicate that ηN decreases for increasing α and decreasing n if
α ∈ [0,≈2.2]. While the origin is an asymptote for the thickness profile if α 6= 0 and
n > 1, the function ψ(ζ ) exhibits a finite slope at the current tip that decreases with
increasing n.

In dimensional variables, the leading edge of the current is given by

rN(t)= ηN (α, n)

(
v∗nQ

φ

)1/(3+n)

t(α+n)/(3+n), (2.20)

which is consistent with the correct version of (2.10) in Lyle et al. (2005), in which
the porosity φ is missing. Thus the case α = 3 acts as a discriminant between
decelerating and accelerating currents.

3. Experiments

To validate the theoretical self-similar solution a series of experiments with constant
(α = 1) and time-varying influxes (α = 1.5 and 2.0) were conducted with shear-
thinning fluids; the ambient fluid was air for nine tests and water for two tests.
Although experiments with Newtonian fluids have already been performed by Lyle
et al. (2005), three such tests were conducted to check the quality of the experimental
protocol and the apparatus.

3.1. The experimental apparatus and protocol
The experiments were performed in a 90◦ sector glass tank 25 cm × 25 cm × 25 cm
in size that was filled with transparent glass beads with nominal diameters d = 1.0, 2.0
or 3.0 mm and standard deviations of 10 % (5 % for d = 3 mm). This setup allowed
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FIGURE 3. (a) The experimental apparatus used for the tests. (b) A snapshot of a constant-flux
experiment (side view) and (c) a plane (bottom) view of the same experiment. The results shown
are from test 7 for a shear-thinning fluid intruding into a homogeneous porous medium of glass
beads with d = 1 mm and air as ambient fluid.

us to observe the time evolution of the intruding current from two lateral sides
and through the bottom of the apparatus (figure 3). Two different syringe pumps
were used in the experiments. The first pump was self-built in the laboratory and
had an estimated accuracy of 1 % in the instantaneous discharge. The second was a
commercial Teledyne ISCO 260D pump with an accuracy of 0.5 %, which could be
controlled with an analogue 0–10 V electric signal with 12-bit resolution and was used
in all tests with α > 1. The injection pump was linked to the tank with a rigid tube
that had an internal diameter of 6 mm (a tube with a 1 mm internal diameter was
used with the second pump) that was positioned vertically at the apex of the tank;
the exit section was held 20 mm above the bottom wall. In the second stage of the
experiments, a permeable well was constructed along the vertical axis with a brass net
to achieve a more realistic reproduction of the theoretical injection mode. The analysis
of the experimental results revealed that the different geometries of injection had no
significant effect on the thickness profile of the current. For the two tests that used
water as the ambient fluid, a weir was inserted into one of the vertical tank walls to
discharge the water displaced by the injected volume. The shear-thinning fluids were
suspensions of Xanthan gum (0.1 % concentration by weight) in water or in a mixture
of water and glycerol plus ink to increase the contrast. The rheological properties
of the suspensions were preliminarily evaluated to be in the correct range of shear
rates (see the discussion in § 4) by two different strain-controlled rheometers: (i) a
classical coaxial cylinders shear rheometer (Haake Rotovisco RT10); and (ii) a parallel
plate rheometer (Dynamic Shear Rheometer Anton Paar Physica MCR 101). The latter
apparatus is more sensitive and accurate at a very low shear rate. The mass density
was measured by a hydrometer (STV3500/23 Salmoiraghi) or by weighing a fixed
volume of liquid, with an overall accuracy of 1 % for both methodologies. In addition,
the temperature was systematically measured at the beginning and end of the tests
by submerging a mercury-in-glass thermometer with a resolution of 0.02 ◦C into the
current.
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Test α d
(mm)

m
(Pa sn)

n 1ρ
(kg m−3)

Q
(ml s−1)

5a 1.0 3.0 0.68 0.35 1175 0.60
6a 1.0 2.0 0.68 0.35 1175 0.32
7a 1.0 1.0 0.80 0.33 1169 0.15
8a,b 1.0 1.0 0.33 0.48 1000 0.20
9c 1.0 1.0 0.53 0.53 170 0.04
10c 1.0 2.0 0.20 0.33 170 0.04
11 1.5 2.0 0.12 0.43 1000 0.06 t1/2

12b 2.0 2.0 0.12 0.43 1000 0.032 t
16 1.0 3.0 0.58 1.00 1250 4.00
17 1.0 3.0 0.012 1.00 1145 4.00
18 1.5 3.0 0.26 1.00 1241 0.06 t1/2

TABLE 1. The input values for all experiments. The symbol a indicates experiments
conducted with the pump built in the lab (1 % accuracy), the symbol b indicates the tests
where video is available as supplementary material (see http://dx.doi.org/10.1017/jfm.2013.
389) and the symbol c marks experiments conducted with water as the ambient fluid
rather than air. Q is the full-circle volumetric discharge. The porosity was assumed to
be φ = 0.38, and the permeability was computed using the Carman–Kozeny relationship.
In addition, the values of the rheological parameters were obtained by interpolating the
rheometric data at Θ = 25 ◦C in the range of 0.1–5 s−1.

The instantaneous profile of the current was recorded by a high-resolution video
camera (1920 × 1080 pixels) working at 25 frames s−1 and with a spatial resolution
better than 12 pixel mm−1 under the experimental conditions of the present tests. A
photo camera with a resolution of 3456 × 2304 pixels was used to evaluate the radial
spreading of the current and to check the overall symmetry by observing the evolution
from below. The time step between two consecutive shots of the photo camera varied
between 15 and 300 s and depended on the spreading velocity of the current in the
different tests. The images were processed with software to obtain a planar restitution
and to detect the boundary between the dark intruding current and the light porous
medium that had not yet been invaded, with an overall uncertainty of ±1 mm. The
images taken from the bottom of the tank were used to evaluate the position of the
front end of the current. Table 1 summarizes all the tests that were conducted and
the respective input values. Figure 4(a) shows the dimensionless radius of propagation
as observed from the bottom for all tests as a function of the dimensionless time T
on logarithmic axes. A straight line indicates perfect agreement between the modelled
and observed data. Two videos that were taken for tests 8 and 12 are available as
supplementary material.

A satisfactory collapse of the data onto the theoretical solution is observed for all
tests, which includes those tests with a time-variable influx. Hence the theoretical
analysis is confirmed by the experimental data, and the similarity solution and
variables are suitable for describing the intrusion process. A more detailed comparison
between the theory and our experiments is reported in figure 4(b), which depicts
the dimensionless thickness profile at different times for a selected test (test 11). A
correction was applied to the raw data to take the capillary rise and the meniscus
at the glass wall into account. This correction was estimated from specific tests
by applying a classical methodology (e.g. Smith, Foote & Busang 1930) for the
different diameters of the glass beads and the different liquids used in the experiment.
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FIGURE 4. A comparison of the theory with our experiments. (a) The dimensionless radius of
propagation as a function of the dimensionless time for all tests. The straight lines indicate the
perfect agreement with the theory. For clarity, only one point of every two is plotted. (b) The
experimental height of the current for a time-increasing influx of a shear-thinning fluid at
different times. The thick blue line is the theoretical thickness profile. (c) The experimental
thickness profile versus the theoretical thickness profile for all tests, a single profile per test at
a time correspondent to the last available shot. The thick blue line indicates perfect agreement
with the theory. For clarity, in (b,c) one point of every twenty is plotted.

The correction was equal to ≈1 or ≈2 diameters for larger beads and up to 10
diameters for smaller ones with d = 1 mm. However, the time interval necessary to
achieve an equilibrium in the capillary rise for the smallest diameter was several tens
of minutes, which was often much longer than the duration of the tests. For this
reason, the rise of the capillary fringe was monitored over time in separate tests to
estimate the appropriate correction to the observed height of the intruding current,
which was determined to be proportionate to the time that had elapsed from the
start of the injection. Near the origin, the experimental height is systematically below
the theoretical one, due to two factors: (i) the disturbances induced by the injection
system; and (ii) the intrinsic limitations of the model, which neglects the vertical
velocity of the fluid and underestimates the efficiency of the pressure gradient that
drives the flow. These model limitations result in an underprediction of the current
height near its front end by the continuity equation. In some cases (see figure 4b), this
height discrepancy is close to 10 %, whereas the agreement between the theory and our
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experiments is nearly perfect in terms of the radius of propagation (figure 4a). This
difference is seen because the lateral thickness profiles are the result of a single shot
analysis, while the radius of propagation was evaluated as the average distance from
the origin over all the points that were detected in the images taken from below. A
statistical analysis considering the uncertainties associated with model parameters (see
supplementary material) revealed that the experimental data and the theoretical profile
are statistically equal with a 95 % level of confidence.

A specific sensitivity analysis was carried out on the tortuosity expression (2.3).
Adopting this expression creates an excellent agreement with our experimental results
for tests conducted with Newtonian fluids (tests 16, 17, 18), but a systematic reduction
of ≈30 % is required to reproduce tests with shear-thinning fluids for both constant
and time-increasing injections. This result confirms previous findings in the literature
on the inherent uncertainty of the tortuosity factor for power-law fluids; the available
models and expressions, which are listed in Shenoy (1995), span an interval of
variability that is larger than the required correction in the present tests. To apply
the tortuosity factor reported by Kemblowski & Michniewicz (1979), a systematic
reduction of ≈35 % for shear-thinning fluids and of ≈20 % for Newtonian fluids
is required, whereas the tortuosity factor proposed by Dhrmadhikari & Kale (1985)
requires a coefficient that ranges from 2.2 to 1.0. Although the tortuosity by Pascal
(1983) gives the best fitting with minimum correction, the limited range of the flow
behaviour index for the fluids employed in our experiments precluded a more detailed
analysis of the correct expression of the tortuosity for power-law fluids. Figure 4(c)
shows a comparison between the theoretical and experimental thickness profiles for
all tests. Near the front end of the current (ζ → 1) the agreement is generally good
except for the two tests that employed water as the ambient fluid (i.e. tests 9 and
10); these tests were of long duration, and diffusion mechanisms played a significant
role. Therefore detecting the interface between the ambient and intruding fluids was
uncertain and difficult, and this issue limited the applicability of the model.

4. Discussion

A relevant issue in our analysis is the selection of appropriate values of the
rheological parameters m and n, which is also highlighted in Sayag & Worster
(2013) for experiments on viscous free-surface gravity currents of power-law fluids.
Real non-Newtonian fluids significantly change their rheology at different shear rates,
and a power-law expression represents a local approximation of a more complex
model. For a suspension of Xanthan gum, a Cross or Carreau–Yasuda model is more
appropriate (e.g. Escudier et al. 2001). Figure 5(a,b) shows the results of rheometric
measurements conducted at three different temperatures on the suspensions of glycerol
(60 % vol), water (40 % vol), Xanthan gum (0.1 % weight) and the ink used in tests
5 and 6. Modest shear-thickening behaviour was observed at a very low shear rate
for the data measured at Θ = 30 ◦C, which differs from the yield stress or Newtonian
behaviour commonly reported in the same range of shear rates for high-concentration
Xanthan gum suspensions in water (Whitcomb & Macosko 1978). To the best of our
knowledge, such an inversion of the expected rheological behaviour has never been
documented and could be relevant as Xanthan gum is largely used in the food industry
at concentrations >0.5 %. As a result most rheometric tests have been conducted
on suspensions at this concentration. The few tests on suspensions with a 0.1 %
concentration (Helmreich et al. 1995) are for shear rates >0.5 s−1 and with water as
a carrier fluid. Because many of the present tests were performed at temperatures less
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FIGURE 5. (a) Viscometric behaviours of suspensions of glycerol (60 % vol), water (40 %
vol), Xanthan gum (0.1 % weight) and ink: the shear stress versus the shear rate. (b) The
corresponding apparent viscosities µ = τ/γ̇ = mγ̇ n−1. (c) The estimated shear rate at the pore
scale for test 5 at times t = 30 s and t = 18 min 30 s.

than Θ = 25 ◦C, this apparent anomaly does not affect the present analysis but it is a
caveat concerning data interpretation under similar conditions.

To select the correct shear rate range to interpolate the power-law model, it is
crucial to evaluate the effective shear rate at the pore scale. An expression to estimate
this rate is provided by Savins (1969):

γ̇ = u
√

2× 10−4

√
kφc′

, (4.1)

where u is the Darcian velocity and c′ = 2.1–2.4 is a shift factor related to the
tortuosity.

Figure 5(c) shows the estimated shear rate at the pore scale for test 5 both 30 s
and 18 min 30 s after the start of the injection. Because the shear rate is very low
in most of the flow domain, the power-law parameters should be estimated for γ̇ → 0.
To verify the correctness of this approach, an optimization algorithm was applied to
evaluate the two parameters by minimizing the r.m.s. error between the estimates and
the experimental data and limiting the computation to portions of the current with
0.30 < ζ < 1.0. All of the tests systematically yielded values of m and n that were
larger than the nominal values listed in table 1, and these values were generally
in very good agreement with the parameters that were obtained by interpolating the
rheometric data in the range of 0.05–1 s−1.
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5. Conclusions

We analysed the axisymmetric gravity currents of Ostwald–DeWaele fluids with
a rheological index n intruding into homogeneous porous media and compared the
theoretical results with a set of laboratory experiments. Our self-similar solution
extends the analysis performed by Lyle et al. (2005) for Newtonian fluids. The
experiments for constant (α = 1) and variable (α = 1.5 and 2.0) influxes indicate
that the radial spreading of the current is proportional to t(α+n)/(3+n), as predicted by
the theory. Good agreement between the theory and our experiments is also obtained
for the profile and height of the current except near the axis of injection, at which
the theoretical vertical asymptote is not present. The choice of the most appropriate
expression for the tortuosity factor is essential to obtaining accurate predictions;
available formulae for tortuosity seem to overpredict matrix resistance. Because the
power-law model is an approximation of the real rheological behaviour, selecting
appropriate parameters m and n by fitting the rheometric data is crucial. A good
agreement between the theory and our experiments is observed by assuming that the
relevant shear rate is that measured at the pore scale. The novel results presented
in this paper provide a promising basis for the analysis of non-Newtonian gravity
currents, which are of practical relevance in environmental and industrial processes.
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