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Abstract

This paper presents a model for the laminar propagation of gravity currents
of rheologically complex fluids over natural slopes. The study is motivated
by the ubiquitous occurrence of gravity currents in environmental applica-
tions that are confined by channels that widen and have reduced slopes in
the flow direction; typical examples are mud and lava flows. In these ap-
plications, many fluids exhibit nonlinear relationships between shear stress
and shear rate, with or without the appearance of a yield stress. We consider
Ostwald-de Waele and Herschel-Bulkley fluids. A power-law equation is used
to capture the variations in the channel shape and slope in the flow direction.
We study the motion of constant and time-dependent volumes of these flu-
ids on smoothly varying topographies. Approximate similarity solutions are
obtained for Ostwald-de Waele fluids, while for HB fluids, we use the meth-
ods of characteristics to compute front propagation. Constant volume and
constant influx tests were conducted in a channel with a widening parabolic
cross-section and an inclination decreasing downstream from ≈ 7◦ to ≈ 3.2◦.
The front position was measured continuously over time, and the current
thickness and the surface velocity were recorded for a subset of experiments
in some cross sections. The experimental study confirms the theoretical for-
mulation, with a better agreement for constant influx than constant volume
currents.
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1. Introduction

The propagation of gravity currents in the environment has been widely
studied due to its relevant theoretical and practical implications. The de-
velopment of adequate models makes it possible to describe complex natural
phenomena and to devise appropriate prevention and mitigation measures.
Several examples of gravity currents in meteorology, oceanography, earth
sciences and industrial processes are listed by Simpson [1]: thunderstorm
outflows, sea-breeze fronts, gases in mines, ventilation flows, salt wedges in
estuaries, turbidity plumes in lakes and reservoirs, power station effluents,
oil slicks, avalanches, debris and mudflows, and lava streams. Many environ-
mental fluids involved in these applications exhibit nonlinear relationships
between shear stress and shear rate, without or with the appearance of a yield
stress. In the former case, the preferred rheological model is the Ostwald-
de Waele power-law relationship; in the latter, the Herschel-Bulkley (HB)
model is preferred. For suspensions of fine cohesive sediments (silt or clay) a
non-negligible yield stress typically appears beyond a certain concentration
[2]. The typical cases of environmental non-Newtonian currents are mud-
flow waves propagating down natural slopes [3], mud slurries resulting from
dredging [4] or mining [5] transported to disposal and tailings areas, fluids
employed in fracing technology flowing in subterranean fractures [6], debris
flows triggered by rainfall events [7], and lava flows [8].

A paramount distinction in the study of gravity currents is between vis-
cous and inviscid. In the former case, viscous forces prevail over inertia and
the balance is between gravitational and viscous effects; in the latter case,
inertia is dominant over viscous forces, and the current behaviour is deter-
mined by the interplay of gravity and inertia. The same current can undergo
a transition from inviscid to viscous or, more rarely, from viscous to inviscid
[9]; the inertial to viscous transition for a power-law non-Newtonian fluid was
observed experimentally by Chowdhury and Testik [10].

The objective of the present paper is to analyse viscous gravity currents of
non-Newtonian fluids in a natural environment, motivated by the observation
of natural phenomena such as debris, mud, and lava flows down a slope. The
reference model, valid for a Newtonian fluid, is the viscous two-dimensional
gravity current of time-variable volume propagating over an horizontal rigid
plane [11] or down a slope [12]. Takagi and Huppert [13] considered viscous
Newtonian flow in channels of finite width and constant cross-section, incor-
porating the effect of the channel shape and showing its influence on the front
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velocity of the current. They extended the model upon allowing the channel
cross section to vary longitudinally in a continuous fashion [14]. Longo et al.
[15] and [16] solved a similar problem for a power-law non-Newtonian fluid.

When the rheological model involves a nonzero yield stress, the flow char-
acteristics are harder to predict as solid and liquid regions of a permanent
or transient nature appear [17]. The behaviour of two-dimensional gravity
currents of viscoplastic fluids was modelled analytically by Hogg and Matson
[18] and numerically by Huang and Garcia [3], Vola et al. [19], and Balmforth
et al. [20]. The coupled influence of a finite channel width on viscoplastic
flow down a slope was explored by Mei and Yuhi [21] and Cantelli [22], who
adopted a Bingham rheological model. Flows of viscoplastic fluids down uni-
form slopes were investigated experimentally by Ancey and Cochard [23] and
Chambon et al. [24], among others.

Based on these efforts, we aim at advancing the state of the art on non-
Newtonian flows over natural slopes by improving the description of the
basal topography and of fluid rheology [25]. We model a channel that widens
and reduces its slope along the flow direction. This is the case of mud-
flows and debris flows spreading through hillslope incisions, as gullies and
ravines progressively enlarge and reduce their slope until the alluvial fan is
reached [26]. On volcanic cones, molten lava erodes the ground it flows over
and self-organises into channels [27], that have decreased slopes in the flow
direction [28]. Hence, we consider one-dimensional gravity currents of non-
Newtonian fluids, which are described by the power-law (Ostwald-de Waele)
model, flowing in channels with various shapes, which are described by the
parameter k. The channel cross section and slope are allowed to vary along
the flow direction according to two additional parameters b and ω. The vol-
ume of the current varies over time according to the parameter α. Note that
the combination of a widening cross section and a decreasing slope along
the flow direction is a non-trivial extension of earlier models [14, 16] and
constitutes a novel development for Newtonian flow. Solutions derived in
semi-analytical format are self-similar and allow for a quick assessment of
the spatiotemporal development of the gravity current, which can be used as
a benchmark for more complex numerical models (if the transverse dynamics
can be neglected).

The impact of more realistic rheological models is investigated upon sub-
stituting the power-law constitutive equation with the HB model and con-
sidering the presence of slip effects [29]. The resulting problem is then solved
numerically by employing an algorithm based on the method of characteris-
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tics.
Theoretical results are validated by laboratory experiments, conducted

both with power-law and HB fluids; in the latter case, different methods for
measuring the yield stress are employed and compared.

The structure of the paper is as follows. Section 2 formulates the problem
in dimensionless form for a non-Newtonian power-law fluid; Newtonian flow
is a special subcase. The solution, obtained via the method of characteristics,
is presented and discussed in Section 3. The formulation is extended to the
flow of an HB fluid with yield stress in Section 4. The laboratory setup
and experimental results are presented in Section 5. A set of conclusions,
including recommendation for future work, is drawn in Section 6. Appendix
A contains details on the rheometric measurements, Appendix B includes an
analysis of the dependence of the rate of advancement on model parameters
for power-law currents, and Appendix C describes an extension of the model
for HB fluids to take slip effects into account.

2. Theory

2.1. Currents in power-law fluids

Consider a gravity current of a non-Newtonian Ostwald-deWaele fluid
injected in a straight channel, whose longitudinal slope and cross section
vary along the flow direction (see Figure 1). A locally orthogonal coordinate
system (x,y,z ) is adopted for the analysis, with x along the channel axis, z
normal to the slope, and y across the channel.

As the longitudinal slope of the channel varies with x, the line joining
the lowest points along the channel length (thalweg in fluvial engineering) is
curvilinear; its inclination angle β(x) with respect to the horizontal is given
by

sin β = sin β0

( x

mx∗

)ω
, (1)

where x∗ is a length scale, β0 is the inclination angle at x = mx∗, m is a
coefficient introduced for convenience, and ω is a positive/negative constant
representing an increasing/decreasing bed slope along the flow direction, the
latter case being the most common in environmental applications.

The channel cross section, taken to be symmetric, varies continuously
along x; in the local coordinate system, the cross section walls are described
by the function d(x, y) = (rxb)1−k|y|k, where k is a parameter describing the
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shape, b is a non-negative exponent governing its longitudinal variation, and
r (dimensions [L1−b]) is a constant coefficient; rxb is thus the channel length
scale, whose variation in the x direction is controlled by both r and b. As
to the shape, the wall profile is convex, rectilinear or concave depending on
whether k < 1, k = 1 or k > 1. Thus, k = 1 describes a triangular cross
section, while k < 1 and k > 1 describe narrow and wide channels, respec-
tively. In wide channels, the transverse dimension prevails over the vertical;
the reverse is true in narrow channels. Relevant cases of wide channels are
k = 2, which locally approximates a circular section with radius rxb/2, and
k → ∞, corresponding to a rectangular cross-section with semi width rxb.
As to the longitudinal variation, the special case b = 0 corresponds to a con-
stant cross-section, while for b > 0 wide channels (k > 1) tend to broaden
and narrow channels (k < 1) to squeeze along the flow direction.

The fluid is released at the upper end of the channel; for convenience, the
release is assumed to occur in the initial cross section, even though release
over a finite channel length can in principle be accounted for (see, e.g., [23]).
The volume of the current varies over time as ∝ tα, where α = 0 indicates a
fixed volume, α = 1 a constant influx, and α ≷ 1 an increasing or decreasing
influx. Cases with α > 1 are less common than α < 1 for environmental
currents; they can be observed in the initial stages of volcanic eruptions, as
the eruption rate decreases with time [30].

It is assumed that the current is always contained by the channel walls;
at a certain distance from the inlet section, the current height h is taken to
be uniform in the transverse direction y and thin compared to its length,
i.e., h = h(x, t) with h(x, t) � xN(t), where xN(t) is the position of the
front end of the current. In this regime, the top width of the advancing
current is given by 2W (x, t) = 2h1/kr1−1/kxb(1−1/k). The length scale in the
transverse direction y is much smaller than the length scale in the direction of
propagation x. In wide channels (k > 1), the current is thin with respect to
the transverse length scale (h � W ); the reverse is true in narrow channels
(k < 1). Viscous forces prevail over inertia and the balance is between
gravitational effects and viscous effects. The latter condition is verified at
negligible distances from the inlet for constant influx (α = 1), and at short
distances for dam-break flows (α = 0).

Under the previous assumptions, the pressure within the current is hy-
drostatic and equal to

p = p0 + ρg(h− z) cos β, (2)
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Figure 1: (a) side view of the current and (b) cross-section of the channel; (c) line join-
ing the lowest points along the channel length (tangent to the local coordinate x in the
propagation direction, solid curve) and the channel slope (dashed curve, red online) for
ω <= −1/2 (decreasing slope). The cross-sections sketched at different abscissae (blue
online) refer to a wide cross-section broadening downstream with k = 2 and b > 0. x′ and
z′ are the lab coordinates.

6

Accepted in Journal of non-Newtonian Fluid Mechanics, 20th july 2016



where p0 is the atmospheric pressure at the free surface, g is gravity, and
ρ the fluid density. The motion is one-dimensional along the channel axis
x with a section-average velocity U(x, t). The momentum balance equation
simplifies to

−∂p
∂x

+ ρg sin β +
∂τyx
∂y

+
∂τzx
∂z

= 0, (3)

where τyx and τzx are the shear stresses. For a power-law fluid, these are
given by τyx = µ̃γ̇yx|γ̇yx|n−1 and τzx = µ̃γ̇zx|γ̇zx|n−1, respectively, where γ̇yx
and γ̇zx are the shear rates, µ̃ the consistency coefficient, and n the fluid
behaviour index (n = 1 for a Newtonian fluid, n < 1 and n > 1 for shear-
thinning/thickening fluids, respectively).

In the following, only the case of wide channels (k > 1) will be consid-
ered, given the focus on surface channels over natural slopes. Hence, the
assumption h � W implies ∂τyx/∂y � ∂τzx/∂z, and the third term on the
l.h.s. of (3) can be neglected.

Substituting the shear stress expressions and the pressure distribution (2)
in the simplified version of eq. (3) valid for a wide channel yields

∂

∂z

[(
∂u

∂z

)n]
= −S, (4)

where S is the source term, equal to

S = −ρg
µ̃

∂h

∂x
+
ρg

µ̃
sin β0

( x

mx∗

)ω
. (5)

By imposing the boundary conditions

u = 0 (z = d), ∂u/∂z = 0 (z = h), (6)

the integration of eq. (4) yields

u(x, y, z, t) = S1/n n

n+ 1

[
(h(x, t)− d(x, y))(n+1)/n − (h(x, t)− z)(n+1)/n

]
.

(7)
The cross-sectional area occupied by the current is

A(x, t) = 2

∫ W (x,t)

0

[h(x, t)− d(x, y)] dy =
2k

k + 1
r(1−1/k)xb(1−1/k)h(1+1/k),

(8)
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and the volume flux is

Q(x, t) = 2

∫ W (x,t)

0

dy

∫ h(x,t)

d(x,y)

u(x, y, z, t)dz

= 2B

[
2 +

1

n
, 1 +

1

k

]
r(1−1/k)S1/nxb(1−1/k)h2+1/k+1/n, (9)

where B[., .] is the Beta function.
The local continuity equation for a one dimensional current is

∂A

∂t
+
∂Q

∂x
= 0, (10)

also equivalent to

2W
∂h

∂t
+
∂Q

∂x
= 0, (11)

because ∂A/∂t = 2W∂h/∂t.
The problem formulation is completed by the mass balance equation∫ xN (t)

0

A dx = qtα, (12)

where qtα, (q > 0, α ≥ 0) is the volume of fluid released. At x = xN(t), the
current height vanishes, i.e.

h [xN(t), t] = 0. (13)

It is then assumed that between the two terms driving the motion included
on the r.h.s. of eq. (5), gravity prevails over the slope of the free surface.
This assumption is true in most of the flow domain except near the front of
the current, where discrepancies with the present model are due to the effects
of curvature of the free surface. Neglecting the first term on the r.h.s. of eq.
(5), and substituting the simplified eq. (5) and eq. (9) into eq. (11) yields

h1/kxb(1−1/k)
∂h

∂t

+ B

[
2 +

1

n
, 1 +

1

k

](
ρg

µ̃

)1/n
(sin β0)

1/n

(mx∗)ω/n
∂

∂x

[
xω/n+b(1−1/k)h(2+1/k+1/n)

]
= 0.

(14)
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The boundary condition at the front of the current, eq. (13), is not satisfied.
Physically, the resulting model does not represent the behaviour of the profile
close to the front end, as in reality surface tension (not included in the model)
smooths the profile down to the zero value and the slope of the free surface
cannot be further neglected.

Substituting eq. (8) into eq. (12) yields

2k

k + 1
r(1−1/k)

∫ xN (t)

0

xb(1−1/k)h(1+1/k)dx = qtα. (15)

The problem is solved in dimensionless form. Introducing the length scale

x∗ =

[
(k + 1)q

2kBαr(1−1/k)

]kn/l(
µ̃mω

ρg sin β0

)kα/l
, l = [b(k−1)+2k+1]n+αk, (16)

and the time scale

t∗ =
1

B

[
(k + 1)q

2kBαr(1−1/k)

]−k/l(
µ̃mω

ρg sin β0

)[b(k−1)+2k+1]/l

, (17)

where B indicates the Beta function with the argument appearing in eq. (9),
eqs. (14-15) become, respectively,

H1/kXb(1−1/k)∂H

∂T
+

∂

∂X

[
X [ω/n+b(1−1/k)]H(2+1/k+1/n)

]
= 0, (18)

∫ XN (T )

0

Xb(1−1/k)H1+1/k dX = Tα, (19)

where dimensionless variables are defined as H = h/x∗, X = x/x∗, XN =
xN/x

∗, T = t/t∗.
A solution to the system of PDEs formed by eqs. (18-19) is sought with

the method of characteristics. Eq. (18) can be written in standard form as

a(H,X)
∂H

∂X
+ b(H,X)

∂H

∂T
= f(H,X), (20)

and along the characteristic curve dX/dT = a/b eq. (20) reduces to the
ordinary differential equation dH/dX = f/a or to dH/dT = f/b [see, e.g.,
31].
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In general, a numerical integration is required; however, eq.(18) admits
the analytical solution

H(X,T ) = c1X
(n−ω)/(n+1)T−n/(n+1), (21)

with

c1 =

[
n

(n+ 1)δ

]n/(n+1)

, δ =
n(k + 1) + k(n+ 1) + b(k − 1)(n+ 1)− ω(k + 1)

k(n+ 1)
.

(22)
The integration of the mass balance equation (19) yields the dimensionless
position of the current front as

XN =

[
δ

c
(1+1/k)
1

]1/δ
T [αk(n+1)+n(k+1)]/[k(n+1)δ] = F1T

F2 , (23)

in which F2 = F2(α, n, k, ω, b) is the propagation rate of the current with
time; its dependency on the model parameters is discussed in Appendix B.
For ω = 0, eqs. (21) and (23) are coincident with the expressions given for
constant slope by Longo et al. [16]; for ω = 0 and n = 1, they further reduce
to the solution given in dimensional form by Takagi and Huppert [13].

It is observed that the thickness of the current resulting from eq. (21)
has its maximum value at X = XN . As earlier noted, this is not true due to
the effects of the curvature of the free surface and surface tension; however,
there is experimental evidence that a current flowing in inclined channels
experiences a fast growth near the front [see 16].

2.2. Currents of a Herschel-Bulkley fluid

The presence of a non-negligible yield stress τ0 modifies the power-law
into the HB rheological model, with a stress-strain relation given by

τij =

(
µ̃|γ̇|n−1 +

τ0
|γ̇|

)
γ̇ij for |τ | > τ0, (24)

where |γ̇| =
√
IIγ̇/2 and |τ | =

√
IIτ/2, with |(...)| representing the magni-

tude of the tensor expressed by introducing its second invariant II(...). The
material flows only when the magnitude of the extra stress tensor exceeds
the yield stress value. Figure 2 shows the geometry of the current in steady
uniform flow, with a yield surface of height hs separating the sheared region
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Figure 2: Cross-section of the channel with a current of fluid in presence of a yield stress.

(of width 2Ws) from the plug, and a near wall, motionless region between
the free surface and the yield surface. In unsteady conditions, rigorously the
velocity in the transverse direction y cannot be neglected and the free surface
and the yield surface vary along y [21]. However, in the present model we
assume that the dynamics in the transverse (y) direction is negligible and
that ∂h/∂y = ∂hs/∂y = 0.

Assuming again that the cross section is ’wide’ (k > 1, b ≥ 0), the adop-
tion of the rheological model (24) for the sheared flow region in eq. (3)
yields

∂

∂z

[(
∂u

∂z

)n]
= −S, for d(x, y) ≤ z ≤ hs(x, t) (25)

with the boundary conditions

u = 0, z = d(x, y) (26)

and
∂u

∂z
= 0, z = hs(x, t). (27)

Integrating eq. (25) with (26)-(27) yields

u(x, y, z, t) = S1/n n

n+ 1

[
(hs(x, t)− d(x, y))(n+1)/n − (hs(x, t)− z)(n+1)/n

]
,

(28)
which is identical to eq. (7) upon substituting h with hs. The volume flux
in the sheared region, Qs, is again identical to eq. (9) upon substituting h
with hs:

Qs(x, t) = 2

∫ W (x,t)

0

dy

∫ hs(x,t)

d(x,y)

u(x, y, z, t)dz

= 2B

[
2 +

1

n
, 1 +

1

k

]
r(1−1/k)S1/nxb(1−1/k)h2+1/k+1/n

s . (29)
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In the plug region, the velocity up(x, y, t) is independent of z and equal to
up = u(x, y, hs, t):

up(x, y, t) = S1/n n

n+ 1
(hs(x, t)− d(x, y))(n+1)/n. (30)

The volume flux in the plug, Qp, is obtained by integration as

Qp(x, t) = 2

∫ Ws(x,t)

0

dy

∫ h(x,t)

hs(x,t)

up(x, y, t)dz

= 2B

[
2 +

1

n
, 1 +

1

k

]
2kn+ k + n

k(n+ 1)
r(1−1/k)S1/nxb(1−1/k)(h− hs)h(1+1/n+1/k)

s .

(31)

Hence, the total volume flux is

Q ≡ Qp +Qs

= 2B

[
2 +

1

n
, 1 +

1

k

]
r(1−1/k)S1/nxb(1−1/k)h1+1/k+1/n

s

[
h+

n(k + 1)

k(n+ 1)
(h− hs)

]
.

(32)

For n = 1 and τ0 6= 0 (Bingham fluid), b = 0 (uniform section in the x
direction), ω = 0 (constant bed slope), and k → ∞ (rectangular cross-
section of width 2r), the expression (2.13) in Liu and Mei [32] is recovered
after the pressure gradient in the streamwise direction is neglected. Under
steady-state flow, eq. (32) was earlier derived by Cintoli et al. [33].

Special attention should be devoted to the boundary condition at the bot-
tom. Numerous experiments have shown that slip occurs near the walls due
to migration of polymers or particles from high shear regions [29]. The phe-
nomenon occurs also in real environmental flows (lavas and glaciers) where
the motion occurs with a sequence of solidification and melting which produce
a slip [34]. As a working assumption, we neglect the slip contribution when
comparing theory and experiments. Appendix C describes the extension of
the model to take slip effects into account.

On the yield surface, τxz = ±τ0, which results in

hs(x, t) = h(x, t) +
τ0 sgnu

ρg cos β(x)(∂h/∂x)− ρg sin β(x)
. (33)
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Assuming again that the channel slope is dominant with respect to the free-
surface gradient, eq. (33) simplifies into

hs(x, t) = h(x, t)− τ0
ρg sin β(x)

. (34)

where the velocity u is taken to be positive. Introducing the expression of
the channel inclination (1) into (34) yields

hs(x, t) = h(x, t)− τ0
ρg sin β0

( x

mx∗

)−ω
≡ h− hc

( x

mx∗

)−ω
, (35)

where hc = τ0/(ρg sin β0) is the threshold depth of a layer about to flow down
an inclined plane of slope β0. Considering that the channel slope varies along
the flow direction, this entails an increment (reduction) of the thickness of
the plug downstream if ω < 0(> 0) (inclination decreasing/increasing with
x).

Substituting eq. (32) into eq. (11), and neglecting the inclination of the
free surface in the source term of eq. (5) results in

h1/kxb(1−1/k)
∂h

∂t
+

∂

∂x

[
B

[
2 +

1

n
, 1 +

1

k

](
ρg

µ̃

)1/n
(sin β0)

1/n

(mx∗)ω/n

×xω/n+b(1−1/k)h(1+1/k+1/n)
s

(
h+

n(k + 1)

k(n+ 1)
(h− hs)

)]
= 0, (36)

while the boundary condition (13) and the mass balance equation (15) are
unvaried. Utilising the same length and time scales defined in (16) and (17),
and defining Hs = hs/x

∗ and Hc = hc/x
∗, yields in dimensionless form

Hs = H −Hc

(
X

m

)−ω
(37)

H1/kXb(1−1/k)∂H

∂T

+
∂

∂X

[
Xω/n+b(1−1/k)H1+1/k+1/n

s

(
H +

n(k + 1)

k(n+ 1)
(H −Hs)

)]
= 0. (38)

The global mass balance equation (19) is unchanged.
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A solution to eq. (38) with the constraint represented by eq. (19) is
sought numerically employing an algorithm based on the method of charac-
teristics. The chosen dependent variable is Hs, and the partial differential
equation is transformed into an ordinary one in the time domain along the
single characteristic curve propagating downstream. The spatial domain is
discretised into a uniform grid (500 points in most computations) extending
from the source to the front end of the advancing current; computations are
performed at each time step. The initial condition is computed by neglecting
the yield stress and the slip effect, adopting the analytical solution repre-
sented by eq. (21) with a front end position given by eq. (23). A boundary
condition at the injection section is obtained by equating the depth of the
current to the normal depth of the instantaneous flux.

As a final comment, we recall that the existence of a plug layer implies
some inconsistencies in the description of the flow. These inconsistencies are
overcome by admitting a pseudo-plug as described by Walton & Bittleston
[35], and a pseudo-plug and fake yield surfaces, as further discussed in [36].
In the pseudo-plug model, higher order terms are associated with a weak
yield instead of a rigid motion.

3. The experiments

To test the theoretical formulation, a channel with a decreasing bottom
inclination and a longitudinally variable, parabolic cross-section was ma-
chined out of medium-density poliurethane using a CNC milling cutter. The
channel is 200 cm long with cross-section characterised by k = 2 (a parabola,
locally approximated by a circle) and linearly enlarging downstream (b = 1)
with parameter r = 0.2. The channel has an inclination β0 = 5◦ at a dis-
tance x0 = 100 cm from the virtual origin, which is located 50 cm upstream
of the initial section. The parameter controlling the variation of the bottom
inclination, sin β(x) = sin β0(x/x0)

ω, is ω = −1/2. Hence, the channel incli-
nations are β ≈ 7◦ in the initial section (x = 50 cm) and β ≈ 3.2◦ in the end
section (x = 250 cm). The line joining the lowest points along the channel
length and the angle of inclination of the experimental channel versus the lab
coordinate are shown in Figure 1. Figure 3 depicts the experimental layout,
with a photo showing the advancement of the current.

The laboratory tests were performed with constant volume (α = 0) and
constant inflow (α = 1). In the first case, a nearly instantaneous release
(dam-break) was obtained with a lock gate located 16 cm from the inlet
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Figure 3: The experimental layout; the insert shows a photograph of the advancing current.
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section; the volume of released fluid was measured by weighing the mass
initially stored in the lock with an accuracy of 1.5%. The constant flow
rate required by tests with α = 1 was obtained employing a diaphragm
pump or a rotating vane pump (for the fluids with larger viscosity), with the
hydraulic circuit controlled by solenoidal valves; this allowed an electronic
control of the timing. The flow rate was estimated by measuring the weight
variation of the container filled with the test fluid, directly on the plate of an
electronic scale, with an overall accuracy better than 1%. Some tests with
shear thickening fluid were performed by directly pouring the liquid through
funnels of different size with an accuracy in the average discharge of 1.5%.

The position of the current front was detected by employing an HD video
camera (1980× 1020 pixels) with a frame rate of 25 Hz, observing the front
with respect to a rule drawn directly on the channel bottom and having a
space step of 5 cm between the marks. A smaller space step was judged un-
necessary due to the relatively low speed of the front of the current in most
tests. The most advanced tip of the current (positioned along the channel
axis) was taken to indicate the front, even though the transverse average
position of the front should be computed to be consistent with the assump-
tions. However, the associated error is negligible as the current advances; for
most experiments, it is less than ≈ 3 cm near the inlet section and less than
≈ 1 cm near the end section of the channel.

For some tests, the thickness of the current was measured in two sections
using an Ultrasound distance metre (Turck Banner Q45UR) with an accuracy
of 0.03 cm and a time response of 10 ms [see 37, 38, for details on its
accuracy]. Particle Image Velocimetry was also performed near the front of
the current to measure the surface velocity. The image were taken from the
video at 25 frames/s and then elaborated with an overall uncertainty in the
velocity equal to 0.05 cm/s.

The Newtonian fluid used in the experiments was pure glycerol. Xan-
than gum was added up to 0.1% (wt) to obtain shear-thinning fluids. The
shear-thickening fluid was a mixture of water (45% wt) and cornstarch (55%
wt). Water and Xanthan gum (0.8% and 1% wt), or water and Carbopol
980 (0.9% and 1.8% wt, non-neutralised) were used to obtain an HB shear-
thinning fluid. Neutralisation of Carbopol mixtures allows obtaining thicker
fluids with higher yield stress and consistency index, that is generally less
sensitive to chemical disturbances and to ions. However, the non-neutralised
mixtures were used within a short period after their preparation and rheomet-
ric measurements, taking care of the cleanliness of the tools and of the sur-
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Figure 4: (a) Chevrons appearing on the free surface of a HB fluid in Experiment 26; (b)
a HB fluid at rest in the channel 10 minutes after stopping the injection in Experiment
29.

faces. Details on the rheometric measurements, including methods adopted
to measure the yield stress, are reported in Appendix A.

While the experiments with power-law fluids did not show any significant
unexpected feature, some experiments with HB fluids showed some remark-
able aspects in the free surface geometry. Figure 4a shows the HB fluid
current during Experiment 26, with some characteristic chevrons that have
been observed and analysed by Slim et al. [39] for a viscous fluid flowing in
a channel and covered by an elastic plate or by a thin skin of very viscous
fluid. A plausible explanation is an instability of the free surface layer due to
the varying traction of the fluid flowing underneath, with a consequent out-
of-plane buckling due to the associated in-plane shear. The inlet condition
could also have contributed to the phenomenon. Figure 4b shows the residual
fluid in the channel 10 minutes after stopping the injection for Experiment
29. The thickness of the residual layer of fluid is proportional to the yield
stress and increases streamwise for constant yield stress.

4. Results and discussion

Two sets of experiments were conducted to validate the theoretical results.
In the first set, power-law fluids were used, both dam-break (α = 0) and
constant inflow (α = 1) conditions were considered, and the current front
was measured over time. In the second set of experiments, HB fluids were
used under the condition α = 1, and the current front and profile (for some
experiments) were recorded over time.

In comparing theory and experimental data on the position of the front,
a time shift was introduced to account for factors affecting the initial stage
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of propagation of dam-break flows (α = 0), such as (i) the initial collapse
of the fluid volume and (ii) the length of time to open the gate. It was also
necessary to introduce a correction to account for the effective experimental
conditions, that differ from theory: the volume of fluid was not a Dirac pulse
but was stored in a finite length of the channel (from an abscissa of 50 cm
- the distance of the starting section of the channel from the virtual origin -
to 66 cm - the section of the lock). The shift was taken to be equal to the
sum of two terms: i) the theoretical time requested for a Dirac volume in the
origin to reach the section of the lock (always positive) and ii) a correction
to include inertia effects (always negative, as inertia reduces the speed of
the front). In order to avoid a subjective evaluation of the time shift, a
fitting procedure was applied to minimise the residual between the theory
and the experiments. The computed time shift was of a few seconds for the
most viscous fluids. However, no adjustment of the rheometric parameters
was requested, even though the time shift gave a degree of freedom in data
fitting.

Parameters for the first set of experiments are listed in Table 1. The
resulting position XN of the front end of the current is shown in dimensionless
form in Figure 5a (symbols) for α = 0 and in Figure 5b (symbols) for α = 1.
The solid line represents perfect agreement with the theory. For α = 0,
good agreement between the theoretical model and the experiments becomes
evident only in the late stage of propagation. In the early stage, lubrication
theory is invalid because the depth-to-length ratio is not small. Then the
current accelerates evolution towards the viscous regime. For this reason,
the asymptotic theoretical line is reached from below in Figure 5a. For
experiments with constant inflow rate (α = 1), the position of the front shows
a tighter agreement with the theory; discrepancies are attributed essentially
to the variations of the rheometric parameters during time as a consequence
of water evaporation.

Table 2 lists the parameters for the second set of experiments (HB fluids).
Preliminarily, we note that the interpretation of the experiments with HB
fluids requires special attention with respect to power-law fluids, because the
yield stress is difficult to measure with accuracy. The best agreement between
experiments and theory was obtained with a direct measurement of the yield
stress (see, e.g., Experiments 29, 30 and 31). Direct measurement of the yield
stress was performed for all the experiments. Moreover, water evaporation
induced an increase over time of the yield stress and the consistency index.
As a consequence, the front of the current was progressively decelerated. See
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# α n µ̃ ρ q

(Pa sn) (kg m−3) (ml s−α)

1 0 1.00± 0.01 0.126± 0.005 1260 642 glyc
2 0 1.00 0.126 1260 267 glyc
4 0 1.47± 0.08 0.75± 0.07 1200 707 corn
14 0 0.53± 0.02 0.22± 0.01 1153 463 glyc-Xanth
15 0 0.53 0.22 1153 169 glyc-Xanth
16 0 0.53 0.22 1153 300 glyc-Xanth
3 1 1.47± 0.08 0.35± 0.03 1200 5.74 corn
5 1 1.47 0.88± 0.07 1200 19 corn
6 1 1.00± 0.01 0.126± 0.005 1260 0.92 glyc
7 1 1.00 0.40± 0.01 1260 6.93 glyc
8 1 1.00 0.40 1260 8.38 glyc
9 1 1.00 0.36± 0.01 1260 8.96 glyc
10 1 1.00 0.34 1260 4.13 glyc
11 1 0.57± 0.02 0.57± 0.02 1153 18.38 glyc-Xanth
12 1 0.57 0.57 1153 8.24 glyc-Xanth
13 1 0.57 0.57 1153 6.25 glyc-Xanth

Table 1: Parameter values for the experiments with power-law fluids. The last column
indicates the fluid: pure glycerol (glyc), glycerol and Xanthan (glyc-Xanth), water (45%
wt) and cornstarch (55% wt) (corn). The uncertainty listed for the rheometric parameters
refers to one standard deviation.

Appendix A for a more detailed discussion.
Figure 6 shows a comparison between the experiments (symbols) and the-

ory (solid lines) for HB fluids. The proposed model captures the propagation
of the current front, with modest differences between theory and experiment;
these discrepancies tend to decrease as time increases. The theoretical model
represented in Figure 6 does not include slip effects, as their influence on the
overall dynamics of the current in the present experiments (the surface of
the channel has not been polished after milling, and has a roughness of the
order of fractions of millimetres) are minimal and decidedly smaller than the
uncertainties in the rheological parameters and in the overall geometry of the
system.

A comparison between the theoretical and the experimental thickness is
shown in Figure 7ab for Experiments 21 and 23, respectively. The experi-
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Figure 5: Experimental (symbols) versus theoretical (solid lines) front position for power-
law fluids and (a) α = 0, (b) α = 1.
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mental profile is smoother than the theoretical one due the dominant role
of surface tension and free surface inclination with respect to the bottom
inclination; it is also usually thicker, as a consequence of the three dimen-
sional nature of the flow near the front. In this region, the inner solution of
Huang and Garcia [3] could be adopted for a more realistic description of the
profile; we neglect this local effect because we are interested in the overall
dynamics of the current. Note that the peak of the thickness of the current
at the front is completely smoothed out, presumably as an effect of the yield
stress because power-law fluid currents in inclined channels still show the
peak (see Longo et al. [16]). The streamwise surface velocity is shown in
Figure 8 for Experiment 23. The streamwise velocity in the mid longitudinal
cross section is characterised by several oscillations associated withthe free
surface chevrons. Along transverse cross-sections, the velocity distribution is
uniform in the core of the current and rapidly decays to zero near the contact
line with the channel bottom. This is not consistent with eq. (30), which
predicts a profile that reflects the bottom shape. However, it is necessary
to consider that the transverse dynamics, which are completely neglected in
the present model, smooth the velocity gradient by transferring momentum
from the high velocity (in the mid-section of the channel) towards the low
speed regions (the lateral walls).

The assumption h/W << 1 required by the theoretical model was not
respected for all experiments nor for the entire duration of individual experi-
ments. Remarkably, the solutions derived in the context of the approximation
prove quite robust in interpreting results at the limit of the range of validity
of the assumption and even beyond. This is quite common in the abundant
literature on viscous gravity currents and porous gravity currents.
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# α n µ̃ τy ρ q

(Pa sn) (Pa) (kg m−3) (ml s−α)

21 1 0.63± 0.03 0.88± 0.07 5.6± 0.4 1000 11.4 Carb (0.9%)
22 1 0.63 0.88 5.6 1000 24.9 Carb (0.9%)
23 1 0.42± 0.02 2.8± 0.2 18.4± 0.3 1020 39.7 Xanth (1%)
24 1 0.42 2.8 17.8± 0.5 1020 42.6 Xanth (1%)
26 1 0.20± 0.01 7.9± 0.4 6.4± 0.4 1018 9.6 Xanth (0.8%)
27 1 0.20 7.9 6.4 1018 18 Xanth (0.8%)
28 1 0.20 7.9 6.4 1018 42 Xanth (0.8%)
29 1 0.53± 0.02 1.7± 0.1 3.5± 0.4 1000 20.3 Carb (1.8%)
30 1 0.53 1.7 3.5 1000 32.7 Carb (1.8%)
31 1 0.53 1.7 3.5 1000 10.2 Carb (1.8%)

Table 2: Parameter values for the experiments with HB fluids. The last column indicates
the fluid: water and Carbopol 980 (Carb), water and Xanthan (Xanth). The uncertainty
listed for the rheometric parameters refers to one standard deviation.

Figure 6: Experimental (symbols) versus theoretical (solid lines) front position for HB
fluids and α = 1. The dashed lines are the confidence limits of the theoretical model
applied to one of the experiments.
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Figure 7: HB fluids. (a) The current thickness for Experiment 21 at 125 cm and 200
cm from the virtual origin, and (b) for Experiment 23 at 125 cm from the virtual origin.
Experimental (symbols) versus theoretical (solid curves) values. The error bars indicate
one standard deviation, the dashed curves are the confidence limits.

Figure 8: Surface streamwise velocity for Experiment 23. The upper panel de-
picts the velocity at y = 0, the right panel depicts the velocity at x =
150 (circles), 155 (triangles), 160 (squares), and 165 cm (diamonds). The values are av-
eraged over a strip 0.8 cm wide.
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5. Conclusions

We presented a theoretical model for the confined laminar flow of a gravity
current of non-Newtonian fluid in a channel with a variable cross section
and a variable bottom slope. The fluid is described by a Herschel-Bulkley
model, including the power-law and Newtonian models as special cases. The
problem is solved with the method of characteristics, either numerically (in
the most general case of a nonzero yield stress) or analytically for power-
law/Newtonian fluids.

The theory was tested against laboratory experiments; in general, exper-
imental results for the rate of advancement of the current compare success-
fully with the theoretical formulation. The numerical approach reproduces
the propagation of non-Newtonian currents at all times. The self-similar so-
lution captures the behaviour of the front of power-law currents for constant
flow rate, while it exhibits discrepancies at early times for instantaneous in-
jection. The profile of the current is underestimated by the theory due to the
three dimensional nature of the flow near the front, which induces a typical
tongue shape in the horizontal projection.

The rheometry of the fluids proves to be essential in interpreting the
flow behaviour and in comparing theory and experiments. In fact, the three
parameters of the HB model show an interchangeable role in that different
combinations of parameter values fit the experimental results equally well.
Our tests highlight the crucial role of the yield stress, and suggest that it
should be measured using a direct method. Indirect measurements of the
yield stress on the base of rheometric data and without preventing slip are
prone to error.

Our model captures the main features of natural phenomena such as de-
bris, mud, and lava viscous flows down a slope. These environmental flows
are usually channelised and often develop in self-formed channels due to ero-
sion or deposits, with the latter forming levees. Typically, along the flow
direction these channels exhibit a progressive reduction of the bottom slope
and a widening cross section. These features are included in the model for-
mulation and allow for a quick assessment of the spatiotemporal development
of the gravity current, which can be used as a benchmark for more complex
numerical models.

Possible extensions include (i) an analysis of the geometries of channels
self-formed by viscous, non-Newtonian currents. This analysis seems inter-
esting because it allows the prediction of the front speed and involves an
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equilibrium model similar to that developed for rivers with mobile bottoms
with further complexities due to the changing nature of the fluid rheology;
(ii) the adoption of more realistic rheological equations, including a time de-
pendence due to either the fluid nature or non-isothermal conditions; (iii)
spatial variation of the fluid rheology associated with deposits of some com-
ponents of the fluid or mixing of the initial current fluid with the eroded
material; (iv) a model refinement close to the front; (v) an in-depth analysis
of the free surface instabilities, which are expected to influence the shearing
flow. These free surface instabilities also favour the fracturing of the plug
flow layer, facilitating the exchange of chemicals and heat (e.g., lava flow) be-
tween the current and the overlying atmosphere. In particular, the inclusion
of a spatial variation of the fluid rheology due to temperature variations is a
challenging task because it requires an additional thermal balance equation
and the estimation of additional parameters.

Appendix A. The rheometry of the fluids

The rheological behaviour of all fluids employed was assessed using a
strain-controlled rheometer (coaxial cylinders Haake RT 10 RotoVisco). For
Ostwald-de Waele shear-thinning and shear-thickening fluids, the flow be-
haviour index n and the consistency coefficient µ̃ were obtained by fitting a
power-law to the measured data in the expected shear rate range.

For HB fluids, measurements are more complex and care is necessary to
evaluate three model coefficients, in particular the yield stress. The reality
of yield stress in fluids has been long debated, but this aspect seems of minor
interest here, as an effective model of the fluid is necessary. As Carbopol
was employed in our experiments, it is worth noting that for Carbopol 980
mixtures no yield stress was detected by Roberts and Barnes [40]. However,
their measurements at high shear rate could be approximated by the HB
model. Piau [41] conducted a detailed review on the variegate techniques
used in measuring the properties of Carbopol gels, concluding that they can
be adequately described by the HB model by ignoring elasticity, normal shear
stresses and transients.

When dealing with HB fluids, the coaxial cylinders of the rheometer (cup
and rotor according to DIN 53019, with internal radius equal to 19.36 mm and
external radius equal to 21 mm) were roughened by sticking small strips (1
mm large, 0.1 mm thick) of Sellotape in the axial direction on both cylinders,
to prevent slip. Although this method of increasing the roughness is uncon-
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Figure A.9: (a) A plot of the shear stress and of the apparent viscosity versus shear rate
for a Carbopol 980 mixture (1.8% non-neutralized). Several cycles were performed with
the same sample, with increasing and decreasing torque. The solid line is the fitted HB
model; (b) fitting to the HB model by measuring independently the yield stress with a
direct method.

ventional, it is effective in preventing the slip as confirmed by comparing the
rheometry data with and without Sellotape stripes, see [29]. The fitting of
the function τ = τ0 + µ̃γ̇n to the experimental points, after correction of the
apparent shear rate (see, e.g., [42]), gave the three parameters τ0, µ̃ and n.
Figure A.9a shows the shear stress and apparent viscosity versus shear rate
for the mixture of Carbopol 980 (1.8% non-neutralized). The fitting with the
HB model results in τ = 3.89 + 1.45γ̇0.56, with the standard deviation of the
parameters equal to στ0 = 0.24 Pa, σµ̃ = 0.13 Pa sn, and σn = 0.02. Figure
A.9b shows the fitting to the HB model by evaluating a priori the yield stress
with a direct method and then fitting the two remaining parameters.

In fact, the yield stress was also measured using two different direct meth-
ods, based on the static stability of a layer of fluid of known thickness on an
inclined plane [43]. A layer of fluid was spread with a uniform thickness in
a wide rectangular channel on a plane which could be slowly tilted by a DC
motor (inclination rate less than 0.05◦s−1), with the instantaneous inclina-
tion measured by a 0.1◦ accurate electronic level. The free surface was seeded
with small sand particles to facilitate the detection of the motion, and the
bottom was covered with sand paper to prevent slip. Both particles and the
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display of the level were recorded with the HD video camera, and the images
were post processed with a Particle Image Velocimetry software to measure
the free surface velocity in a restricted area located far from the walls. Figure
A.10a shows a photograph of the apparatus, and Figure A.10bcd shows the
free surface velocity measured along the maximum inclination for three dif-
ferent tests. The data are dispersed because no filtering or interpolation was
applied to the extracted velocity vectors. The results for the six tests (four
with a layer thickness equal to 5.7 mm and two with a layer thickness of 3.8
mm) are depicted in Figure A.11a, with error bars corresponding to ±1 stan-
dard deviation (STD). The significant time increment of the measured yield
stress can be attributed to the progressive evaporation of the water. In fact,
the setup of each test (flattening the layer of fluid, mounting the electronic
level, preparing the video camera) required up to 10 minutes. The difference
in the results between experiments with different layer thicknesses can be
attributed to the different importances of the experimental interferences and
spurious effects.

A second method was based on measuring the residual thickness of fluid
in the channel using an ultrasound distance metre after stopping the fluid
injection. Waiting approximately 10 minutes, a complete stop of the fluid was
observed. Then, measurements were taken in five different locations (except
for one of the experiments, in which only three sections were measured). The
results are shown in Figure A.11b for three experiments. The resulting values
of yield stress are much more coherent than those obtained with the tilting
plane, even though the residual thickness of the fluid layer in the central
section of the channel is proportionally larger than in the other sections. As
a consequence, there is an over prediction of the yield stress value. This
phenomenon can be attributed to the fluid wave travelling from the inlet to
the outlet of the channel after stopping the injection and to the transverse
flow towards the centre of the cross section. In addition, the progressive
evaporation of the water increases the yield stress and modifies the critical
depth of the current. As a result, the final profile of the fluid at rest is
controlled by (i) the process of progressive flow arrest, and (ii) the increment
of the yield stress due to water evaporation. The two methods used for
direct determination of the yield stress provided different results, but the
second method gave a value in better agreement with the extrapolation of the
rheometric measurements. The parameters of the HB model for the Carbopol
980 mixture (1.8% non-neutralised) were thus computed by imposing a yield
stress τ0 = 3.5 Pa s, equal to the average value of the results of the thickness
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Figure A.10: (a) An image of the apparatus used for the direct measurement of the yield
stress, with the display of the electronic level mirrored in the lower left corner. The rect-
angle indicates the area of PIV elaboration to extract the free surface velocity (the vectors
indicate the instantaneous velocity of the free surface), with a spatial resolution equal to
6.5 pixels/mm. The plots of the free surface velocity versus time and plane inclination
for a Carbopol 980 mixture (1.8% non-neutralized) are shown for (b) Experiment 2r, (c)
Experiment 3r, and (d) Experiment 4r. The solid lines indicate the fitted free surface
velocity, the vertical solid line indicates the assumed start of flow motion and the right
vertical axis is the average shear rate obtained by dividing the free surface velocity and
the starting thickness of the layer, neglecting its reduction in time. The thickness of the
layer was set to 5.7 mm.
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Figure A.11: Yield stress measured (a) using a tilting plane with a fixed initial thickness
of fluid, and (b) on the basis of the residual thickness of the fluid in five sections of the
channel 10 minutes after stopping the injection. The error bars correspond to ±1 STD.

of the residual layer in the experimental channel, and fitting the curve to the
rheometric experimental data, resulting in τ = 3.5 + 1.7γ̇0.53 Pa. The same
procedure was also used for the other yield stress fluids.

Upon observing the rheological behaviour of the fluids of interest over
time, we noted that the rheology of Xhantan gum mixtures exhibits some
time dependence, while Carbopol mixtures are essentially free of this phe-
nomenon, as earlier noted by Piau [41]. Correspondingly, the former mixtures
are expected to show a poorer agreement with the present model (based on
time-independent rheological characterisation of the fluid) than the latter, a
fact that was confirmed by our experiments.

The mass density was measured using a hydrometer or a pycnometer,
with a relative uncertainty of 0.1%.

Appendix B. Discussion of the theoretical results: front velocity
of power-law currents

The parameter space of the exponent F2 modulating the current extension
with time in eq. (23) is explored in Table B.3. First (row 1), it is observed
that the expression of F2 is valid below a limit value ωe of the parameter
ω describing the longitudinal slope variation. The limit value ωe is strictly
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positive, indicating that the solution is valid for any combination of channel
shape (k), longitudinal variation (b) and fluid rheology (n), when the channel
slope is decreasing (ω < 0). The same is true for an increasing channel slope
(ω > 0) only when the limit value ωe is not exceeded.

Second, Table B.3 (row 2) shows that the current is decelerated or ac-
celerated (F2 ≶ 0) depending on a critical value αa of the volumetric rate
of increase α. This is true for all negative slope variations (ω < 0) and for
positive slope variations not exceeding a limit value ωa with 0 < ωa < ωe. In
the range ωa < ω < ωe, the current is accelerated for any value of α, as the
effect of the increasing channel slope prevails over the widening of the cross
section. The critical value αa depends also on the rheology (n), whereas it
does not for a constant slope channel [16].

Third, the dependence of F2 on the model parameters is investigated
upon taking partial derivatives with respect to α, n, k, b, and ω (rows 3-7 of
Table B.3). The propagation rate F2 increases with α for all combinations
of n, k, b and ω because the current volume is larger. The propagation rate
F2 is independent of the fluid rheology (n) when the volumetric increase α
equals another critical value αn, and the channel slope is in an intermediate
range of the slope variation parameter, ωn1−ωn2, including both negative and
positive values. In the same range of ω, F2 increases/decreases with n for a
slow (α < αn) or fast (α > αn) increase of current volume. Beyond the upper
(positive) threshold ωn2, F2 decreases with n irrespective of α; the reverse is
true below the lower (negative) threshold. This complex dependence of F2

on n reflects the interplay of gravitational, viscous, and mass balance effects.
Similarly, the dependency of F2 on the channel shape k is governed by

a critical value αk of the volumetric parameter α and two limit values of ω
and b, ωk and bk. When these two threshold are not exceeded (decreasing
or moderately increasing slopes and moderate widening), the propagation
rate F2 decreases/increases with k for a slow (α < αk) or fast (α > αk)
volumetric increase. This dependency, which has already been observed for
channels with constant slope (ω = 0), reflects the relative importance of the
competing effects of mass balance and viscous resistances. Beyond the upper
(positive) threshold ωk, F2 decreases with k irrespective of α and b; beyond
the upper threshold bk, F2 decreases with k irrespective of α.

Finally, the propagation rate increases with increasing ω for any α, k, n,
and b and decreases with increasing b for any α, k, n, and ω. This is true
because a greater slope parameter ω always produces faster currents, and a
rapid widening of the cross section is associated with slower currents.
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For b = 0, all critical values of α and limit parameters reduce to those
predicted by Longo et al. [16].
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
F2

αk(n+ 1) + n(k + 1)

n(k + 1) + k(n+ 1) + b(k − 1)(n+ 1)− ω(k + 1)
F2 > 0 ω < ωe

ωe n(k + 1) + k(n+ 1) + b(k − 1)(n+ 1)

F2 − 1 < 0 ω ≤ ωa ∧ α < αa

F2 − 1 = 0 ω ≤ ωa ∧ α = αa

F2 − 1 > 0 (ωa < ω < ωe ∧ ∀α) ∨ (ω ≤ ωa ∧ α > αa)

ωa k(n+ 1) + b(k − 1)(n+ 1)

αa
k(n+ 1)− ω(k + 1) + b(k − 1)(n+ 1)

k(n+ 1)
∂F2

∂α
> 0 ∀n, k, b, ω

∂F2

∂n
< 0 (ωn2 < ω < ωe ∧ ∀α) ∨ (ωn1 < ω < ωn2 ∧ α > αn)

∂F2

∂n
= 0 ωn1 < ω < ωn2 ∧ α = αn

∂F2

∂n
> 0 (ω ≤ ωn1 ∧ ∀α) ∨ (ωn1 < ω < ωn2 ∧ α < αn)

ωn1 −1

ωn2
k + b(k + 1)

k + 1

αn
k + β(k − 1)− ω(k + 1)

k(ω + 1)
(to be continued)
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(continued)



∂F2

∂k
< 0 (ωk ≤ ω < ωe ∧ ∀α) ∨ (ω < ωk ∧ b ≥ bk ∧ ∀α)∨

(ω < ωk ∧ b < bk ∧ α < αk)

∂F2

∂k
= 0 ω < ωk ∧ b < bk ∧ α = αk

∂F2

∂k
> 0 ω < ωk ∧ b < bk ∧ α > αk

ωk n

bk
n

n+ 1

αk
n(1 + 2b)

n− b(n+ 1)− ω
∂F2

∂ω
> 0 ∀n, k, b, α

∂F2

∂b
< 0 ∀n, k, ω, α

Table B.3: Dependence of the propagation rate F2 on the model parameters for varying
channel shapes and slopes. Row 1: conditions for F2 > 0. Row 2: conditions for ac-
celerated/constant speed/decelerated currents. Row 3: condition for F2 increasing with
α. Row 4: conditions for F2 decreasing/constant/increasing with n. Row 5: condi-
tions for F2 decreasing/constant/increasing with k. Row 6: conditions for F2 decreas-
ing/constant/increasing with ω. Row 7: conditions for F2 decreasing/constant/increasing
with b. The shear rate on the right axis refers to the nominal thickness of the layer.
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Appendix C. The slip condition

Slip at the wall is a characteristic of many fluids containing polymer
chains, such as Xhantan gum based fluids (see, e.g., [44],[45]) and Carbopol.
There are numerous semi-empirical models describing the slip effect [see, e.g.,
46]; amongst these, we adopt the simple power-law Mooney’s law [47]:

uslip = sτ qb , (C.1)

where τb is the stress at the boundary and s and q are two empirical pa-
rameters. According to Piau [41], the exponent q should be close to one for
smooth surfaces and less than one, between 0.57 and 0.37, for rough surfaces.
The coefficient should be evaluated by experiments.

The presence of a slip increases the discharge with a further contribution
given by

Qslip = 2

∫ W (x,t)

0

dy

∫ h(x,t)

d(x,y,t)

uslip(x, y, t)dz ≡

2s(ρg sin β0)
q
( x

mx∗

)ωq ∫ W (x,t)

0

dy

∫ h(x,t)

d(x,y,t)

(h(x, t)− d(x, y, t))qdz, (C.2)

where the bounds of integration include the formerly defined ’no-flow’ regions
in Figure 2. The integral in eq. (C.2) admits a cumbersome analytic solution
that can be expressed as

Qslip = 2sh1+1/k+q
( x

mx∗

)qω
(rxb)1−1/k(ρg sin β0)

qf(k, q, b, r, x, h), (C.3)

where f(...) is a dimensionless function that can be expressed as a linear
combination of dimensionless arguments. For k = 2 (the exponent describing
the cross section used in our experiments, see §3) eq. (C.3) simplifies as

Qslip|k=2 = sh3/2+q(πr)1/2xb/2
( x

mx∗

)qω
(ρg sin β0)

q Γ[2 + q]

Γ[5/2 + q]
(C.4)

Substituting eq. (32) and eq. (C.3) into eq. (11), and neglecting the

34

Accepted in Journal of non-Newtonian Fluid Mechanics, 20th july 2016



inclination of the free surface in the source term in eq. (5) results in

h1/kxb(1−1/k)
∂h

∂t
+

∂

∂x

[
B

[
2 +

1

n
, 1 +

1

k

](
ρg

µ̃

)1/n
(sin β0)

1/n

(mx∗)ω/n

× xω/n+b(1−1/k)h(1+1/k+1/n)
s

(
h+

n(k + 1)

k(n+ 1)
(h− hs)

)
+ sh1+1/k+q

( x

mx∗

)qω
xb(1−1/k)(ρg sin β0)

qf
]

= 0, (C.5)

while the global continuity equation (15) and the boundary condition (13)
are unvaried. The dimensionless form of eq. (C.5) is

H1/kXb(1−1/k)∂H

∂T

+
∂

∂X

[
Xω/n+b(1−1/k)H1+1/k+1/n

s

(
H +

n(k + 1)

k(n+ 1)
(H −Hs)

)
+ csH

1+1/k+qXqω+b(1−1/k)f
]

= 0, (C.6)

where cs = st∗x∗q−1m−qω(ρg sin β0)
q is a non-dimensional coefficient relating

the scales of the shear-plug flow and the scales of the slip flow. The global
balance equation (19) is unchanged.

For k = 2, the function f depends only on the parameter q, with f =√
π Γ[2 + q]/(2Γ[5/2 + q]) and eq. (C.6) becomes

H1/2Xb/2∂H

∂T

+
∂

∂X

[
Xω/n+b/2H3/2+1/n

s

(
H +

3n

2n+ 2
(H −Hs)

)
+ c′sH

3/2+qXqω+b/2

]
= 0,

(C.7)

with c′s ≡ cs f |k=2 = st∗x∗q−1m−qω(ρg sin β0)
q
√
π Γ[2 + q]/(2Γ[5/2 + q]).
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