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Gravity currents in a linearly stratified ambient fluid
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We present an experimental investigation, supported by a theoretical model, of the
motion of lock-release, constant inflow, and time varying inflow gravity currents
(GCs) into a linearly stratified ambient fluid at large Reynolds number. The aim is the
experimental validation of a simple model able to predict the slumping phase front
speed and the asymptotic self-similar front speed for rectangular and circular cross
section channels. The first investigated system is of Boussinesq type with the dense
current (salt water dyed with aniline) released in a circular channel of 19 cm diameter
and 400 cm long (605 cm in the inflow experiments), half-filled of linearly stratified
ambient fluid (salt water with varying salt concentration). The second system has the
same components but with a channel of rectangular cross section of 14 cm width,
11 cm ambient fluid depth, and 504 cm length. The density stratification of the
ambient fluid was obtained with a computer controlled set of pumps and of mixing
tanks. For the experiments with inflow, a multi-pipes drainage system was set at the
opposite end with respect to the inflow section, computer controlled to avoid the
selective withdrawal. The numerous experiments (28 for circular cross section, lock
release; 26 for circular and 14 for rectangular cross section, constant inflow (fluid
volume ∝ tα, with α = 1); 6 for circular cross section, linearly increasing inflow (α =
2)), with several combination of the stratification parameter (0 < S < 1) confirm the
theory within ≈30% (≈40% for a single series of experiments), which is considered
a good result in view of the various underlying simplifications and approximations.
The results on the front speed of the GCs are discussed in the presence of the internal
waves, which have a celerity given by a theoretical and experimentally tested model
for the rectangular but not for the circular cross section. The theoretical analysis
of internal waves in circular cross sections has been extended and experimentally
validated. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963009]

I. INTRODUCTION

Gravity currents (GCs) consist of a primarily horizontal flow driven by a density difference,
hence the alternative name of “density currents.” Typically, their aspect ratio is very small, as the
horizontal length scale is much larger than the vertical; correspondingly, vertical accelerations of
fluid particles tend to be negligible with respect to horizontal, leading to the hydrostatic approxima-
tion for the pressure.

Gravity currents can be classified according to dominant forces (inviscid or viscous), the type
of release (instantaneous or continuous), and the degree of density difference between the fluids
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(Boussinesq or non-Boussinesq). The study of high-Reynolds-number (almost) inviscid gravity
currents, dominated by the interplay of inertial and buoyancy forces, has been motivated by the
need to understand a variety of environmental phenomena. Typical examples are turbidity currents
in natural water bodies, sea breezes, avalanches, and lava and pyroclastic flows. As such, a vast
literature exists on the topic (Simpson,22 Ungarish25). The pioneering works of Benjamin,3 Huppert
and Simpson,9 and Rottman and Simpson20 dealt with the reference case of a steady or unsteady
gravity current advancing in a wide rectangular channel; later, many different authors introduced
complexity and refinements at various levels, in an attempt to capture more realistically the behav-
iour of natural currents. These often interact with channel topography (as for tidal intrusions,
mudflows, and gas flow in tunnels) or advance into an ambient fluid with spatially variable density,
typically in the form of a vertical density stratification (as in the atmosphere, lakes, and oceans).
At large scales, the rotation of the reference system has important effects on the dynamics of the
gravity currents, see, e.g., the work of Mahalov et al.16 and Hunt et al.8

As for topographic control, the constraint introduced by boundaries significantly modifies the
rate of advance of the gravity current. The front condition for steady currents in non-rectangular
channels of assigned cross section was investigated theoretically and experimentally by Marino and
Thomas,17 and theoretically by Ungarish.27,30 The propagation of lock-exchange unsteady currents
in V-shaped channels was investigated experimentally and with a box model by Monaghan et al.19

Zemach and Ungarish35 developed a one-layer model for unsteady lock-release flow for a generic
non-rectangular cross section; a two-layer model for the same problem was presented by Ungar-
ish.28 An experimental confirmation, including theoretical refinements, of the latter model was
obtained by Ungarish et al.32 for a V-shaped channel, and by Longo et al.14 for a circular channel. A
further extension of the model to currents with constant and variable inflow is reported in the work
of Longo et al.,13 together with experimental confirmation in both conditions.

The importance of fluid stratification can be understood by recalling that according to Yih,34

the most interesting features of the dynamics of non-homogeneous fluids reside in their association
with gravity effects; the interplay of heterogeneity and gravity produces striking phenomena entirely
unexpected. The effect of fluid stratification, mostly taken to be linear, has been studied almost
exclusively in association with planar gravity currents. A generalization of the front condition to
stratified ambient was developed by Ungarish24 and Flynn et al.6 for steady currents, respectively
in the context of one- and two-layer models. Spreading of lock-exchange currents was investigated
experimentally by Maxworthy et al.;18 these experiments validated the one-layer theoretical model
developed independently by Ungarish and Huppert.31 The latter theory was further extended by
Ungarish26 to systems in which both the intruding current and ambient fluid are stratified.

There are some important motivations to extend the analysis of gravity currents to a non-
rectangular cross section. It has been verified (see, e.g., White and Helfrich33) that 2-D simulations
of rectangular cross section gravity currents give results which favourably compare with the exper-
iments, hence we infer that for this geometry, all the three dimensional phenomena (e.g., vorticity
dynamics) have a minor relevance. A non-rectangular cross section implies a truly three dimen-
sional behaviour of the advancing current and of the ambient fluid. An experimental confirmation
in 3-D of the simplified theoretical model is requested to acquire confidence in the goodness of the
approximations and of the simplifications also in flow fields wherein turbulence energy exchanges
and vorticity dynamics play an important role. In addition, a rectangular cross section (which also
mimics an infinite plane) is seldom representative of natural situations: for instance, V-shaped and
U-shaped (locally approximated by a parabola or a circular half-filled cross section) cross sections
are typical of submarine canyons (see, e.g., the work of Inman et al.10 and Covault et al.4).

Not infrequently, topographic control and ambient fluid stratification are simultaneously pres-
ent, as in the dynamics of the atmosphere, oceans, and lakes. To understand the mutual influence of
the two factors, Ungarish29 developed a one-layer model for lock-exchange currents subject to the
influence of both stratification (expressed by the dimensionless parameter S ∈ [0,1]) and geometry
of the cross section. This approach, valid for a linearly stratified ambient fluid and a general shape
of the cross section of the channel, constitutes a generalization of earlier formulations. While the
resulting shallow water (SW) equations are amenable in general to a numerical solution by finite
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difference methods, the initial slumping phase can be solved with the method of characteristics, and
at large times, a self-similar regime may develop.

A general observation is that a quite comprehensive SW theory is now available for the predic-
tion of gravity currents in a wide range of circumstances: channels of various cross section, with
homogeneous or stratified ambients, with and without influx (constant or time dependent). This is a
very significant extension of the classical theory which covered gravity currents in rectangular (or
laterally unbounded) channels. In the novel theory, the classical configuration is just a particular
case with a constant width function of the height ( f (z) = const.). Needless to say, such a widening
of the range of applicability of the theoretical framework requires careful experimental verifications
and assessment. The present study is expected to contribute to this corroboration effort.

To the best of our knowledge, the aforementioned theoretical shallow-water model was never
directly tested experimentally to investigate its validity nor was it extended to currents produced by
the release of a constant inflow (as opposed to lock-release currents), despite these currents being
common in environmental applications. This paper aims at bridging these gaps in the existing exper-
imental and theoretical knowledge of inviscid gravity currents. To this end, we first present in Sec. II
an extension of the formulation by Ungarish29 to the constant inflow case and to the long-term
self-similar regime. We then report in Sec. III results stemming from an extensive experimental
investigation involving the following: (1) lock-release experiments in a circular channel, aimed at
testing the validity of Ungarish’s29 formulation; (2) constant inflow experiments in rectangular and
circular channels, geared at supporting the new theoretical developments of Sec. II; (3) time varying
inflow experiments with S = 0,1 in circular channels, to verify the theoretical self-similar solutions.
Appendix A presents some details on the geometry of circular cross sections; Appendix B illus-
trates the computation of the first mode internal wave celerity for a circular channel; Appendix C
shows the experimental setup to measure the internal waves celerity in a circular channel, and some
measurements of the internal wave density patterns for two experiments in the supercritical and
subcritical regimes, respectively.

II. THEORETICAL MODEL

The geometry of the cross section is represented by the width-function f (z), 0 ≤ z ≤ H .
The standard rectangular cross section channel corresponds to f (z) = const. (see the schematic
description in Figure 1). The circular form of our system renders f (z) = 2(2r)1/2z1/2[1 − z/(2r)]1/2,
0 ≤ z ≤ H ≤ 2r . (Note that f (z) = 2(2r)1/2z1/2 is a good approximation for small z/r .)

Let A, Aa, and AT denote the cross section area of the current, ambient, and the total of the
channel. The relevant definitions (see Figure 1) are

FIG. 1. A schematic description of the (a) lock-release problem for the (b) circular cross section and of the inflow problem
(c) for the (d) circular cross section (for β =H/r = 1) and for the (e) rectangular cross section. C is the center and r is the
radius, b is the width of the rectangular channel, g is the acceleration of gravity, H is the ambient fluid depth, h is the dense
current height, h0 is the initial depth of the dense current in the lock, Q is the inflow rate, ρ0 and ρb are the ambient fluid
mass density at z =H and at z = 0, respectively, with a linear variation along the vertical, and ρc is the mass density of the
current.
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A = A(h) =
 h

0
f (z)dz, AT =

 H

0
f (z)dz, Aa = AT − A. (1)

Note that

∂A
∂x
= f (h)∂h

∂x
;

∂A
∂t
= f (h)∂h

∂t
. (2)

An important variable in the formulation is the area ratio of current to total (channel),

ϕ = ϕ(h) = A/AT , (3)

which for the 2-D case is simply a = h/H . The calculation of ϕ(h) (and of other related geometrical
expressions) for the circular channel is briefly discussed in Appendix A.

We introduce the averaged velocity u(x, t) for the current and ua(x, t) for the ambient. The
averaging is over the corresponding areas. The continuity equation for the current expresses the
observation that the upward flux f (h)(∂h/∂t) is balanced by −∂(Au)/∂x. This can be rewritten as

∂A
∂t
+
∂uA
∂x
= 0; or

∂h
∂t
+ u

∂h
∂x
+

A
f (h)

∂u
∂x
= 0. (4)

For the ambient layer, continuity yields

uaAa = −uA. (5)

The flow in the ambient is also called “return flow,” and is considered a by-product of the main flow
of the current. The effect of the return flow is small when ρaua ≪ ρcu.

In many cases of interest, the GC is thin with respect to the ambient, and the density differences
between the current and ambient are relatively small. This allows for a useful simplification of the
high-Reynolds number equations of motion, referred to as one-layer SW Boussinesq model.

From the physical point of view, (i) the effect of the “return” flow in the ambient above the
current is neglected, i.e., ua = 0, as if h/H → 0. However, for the calculation of Fr at the nose, a
finite hN/H is taken, according to the system under consideration; (ii) the difference between ρc
and ρa is assumed negligibly small in the inertia terms, but relevant in the reduced gravity g′ which
is the driving effect.

We consider the case of a linearly stratified ambient, whose density increases from ρb at the
bottom z = 0 to ρ0 at the top z = H . This is expressed as

ρc = ρ0(1 + ϵ ), ρa(z) = ρ0


1 + ϵ S

(
1 − z

H

)
, (6)

where

ϵ =
ρc − ρ0

ρ0
, S =

ρb − ρ0

ρc − ρ0
, g′ = ϵ g. (7)

The parameter S ∈ [0,1] represents the stratification of the ambient. Conveniently, the non-stratified
case is obtained by setting S = 0 in the equations. S = 1 is the maximum stratification, ρc = ρb
case. For stratified fluid, the buoyancy frequency N2 = −(g/ρ)∂ρ/∂z = Sg′/H is defined.

Consider the pressure fields pi, i = a,c (in the ambient and current, respectively). The thin-
layer assumption predicts that for both fluids, the dominant z-momentum balance is the hydro-
static, ∂pi/∂z = −ρig, and the pressure is continuous at the interface z = h. Using the appropriate
densities, we obtain

pa(z) = −ρ0g

1 + ϵ S

(
1 − z

2H

)
z + C, (8)

pc = −ρ0g(1 + ϵ )(z − h) + pa(h), (9)

where C is a constant and h = h(x, t). The driving effect is the x−component of the pressure
gradient, which follows from Eq. (9) as

∂pc
∂x
= g′ρ0

(
1 − S + S

h
H

)
∂h
∂x

. (10)
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We average the x-momentum inviscid equation over the area A. The balance is between inertia and
pressure gradient (buoyancy). The inertial term ρcDu/Dt is like in the non-stratified case, and the
averaged pressure-gradient term is given by Eq. (10) (which is constant over A). With the ρc ≈ ρ0
(i.e., ϵ ≪ 1) Boussinesq approximation, we thus obtain the momentum equation as

∂u
∂t
+ u

∂u
∂x
= −g′

(
1 − S + S

h
H

)
∂h
∂x

. (11)

Hereafter, we use dimensionless variables unless stated otherwise. We scale horizontal lengths
along the channel with x0, vertical lengths with h0, width with f (h0), speed with U, and time with T ,
where

U = (g′h0)1/2, T = x0/U. (12)

The nose x = xN is a discontinuity governed by the jump condition

uN = Fr h1/2
N Ψ

1/2, (13)

where (i) the “Froude number” function is provided by the generalization of Benjamin’s result (see
the work of Ungarish27),

Fr2 =
2(1 − ϕ)

1 + ϕ

(
1 − ϕ +

1
hAT

 h

0
z f (z)dz

)
, (14)

and (ii) the stratification coefficient is estimated as the ratio of pressure-force over the nose with and
without stratification,

Ψ =

 hN

0
[(pc − pa)S] f (z)dz hN

0
[(pc − pa)S=0] f (z)dz

. (15)

Using Eqs. (8) and (9), we obtain

Ψ = 1 − S

1 − 1

2
hN

H
(1 + Γ)


, (16)

Γ =

 hN
0 (z/hN)(hN − z) f (z)dz hN

0 (hN − z) f (z)dz
. (17)

Note that 0 < Γ < 1, dependent on the cross section shape (for 2-D case Γ = 1/3, for the circle
Γ ≈ 0.43). As could be anticipated, the stratification slows down the propagation: Ψ = 1 for S = 0,
and decreases with S.

The dimensionless equation of continuity is Eq. (4) (unchanged), and of momentum is Eq. (11)
with g′ removed. The system for h(x, t),u(x, t) is hyperbolic, and the characteristic balances are

G(h)dh ± du = 0 on
dx
dt
= c± = u ±


Θ(h)

(
1 − S + S

h
H

)1/2

, (18)

where

Θ(h) = A
f (h) , G(h) =


1
Θ(h)

(
1 − S + S

h
H

)1/2

. (19)

In general, the equations of motion must be solved numerically. However, some analytical
solutions are available, as discussed below.

A. Lock-release (fixed volume) slumping

For the lock-release problem, the initial conditions at t = 0 are u = 0,h = 1 in the lock 0 ≤ x <
1, xN = 1. The boundary condition at the reservoir backwall x = 0 is u = 0.
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The motion starts with the slumping phase with constant speed uN and height hN . To determine
these values, we integrate du/dh from Eq. (18) on a c+ characteristic, from the reservoir with
(0,1) initial conditions to the nose with (uN ,hN) conditions. We intersect the u(h) produced by the
integration with the front condition (13) to obtain

uN ≡
 1

hN

G(h)dh = Fr (hN)h1/2
N

(
1 − S


1 − 1

2
hN

H
(1 + Γ)

)1/2

, (20)

where G(h) is given by Eq. (19). With the outcome represented by Eq. (20), we first solve for hN ,
then obtain uN . The shape of the cross section enters into the expressions G, Fr , and Γ. The solution
is obtained by standard numerical methods (e.g., Romberg integration and a secant-method solver).
Such results are considered “exact” and serve as reliable tests for solutions of the SW equations ob-
tained by finite-difference codes. The slumping results are relevant for a propagation to about xN =

3, during which a c− characteristic from the gate (t = 0, x = 1) travels to backwall, is reflected, and
then reaches the nose with the information that the boundary conditions require a decrease of uN .

B. Fixed inflow rate

When the current is sustained by a fixed (constant) inflow (source) at rate Q at x = 0, a possible
solution is a current with constant hN and uN . Now the outflux (sink) conditions from the tank
are significant. We introduce the parameter γ ∈ [0,1]. Assume that γQ is withdrawn at x = 0 and
(1 − γ)Q at the opposite end. The γ = 0 situation is called “no return,” because there is no flow
of ambient above the current. In the inflow case x0,h0 of the lock are missing; for definiteness we
set x0 = h0 = H . In other words, the scaling length in both horizontal and vertical directions is the
height of the ambient fluid, and influx rate Q is scaled with H2U .

The current flows like a slug of height and speed hN ,uN and hence volume continuity is
expressed as

A(hN)uN = Q. (21)

The nose jump condition (13) was written for a current that propagates into an unperturbed (sta-
tionary) ambient. In the present system the ambient moves with velocity (1 − γ)Q/AT , and hence,
following Shringarpure et al.21 and Longo et al.,14 the jump condition must be applied to the relative
motion, i.e.,

uN − (1 − γ)Q/AT = Fr h1/2
N Ψ

1/2. (22)

Combining Eqs. (21) and (22), with the auxiliary Eqs. (14)-(16), we obtain hN and uN . The dimen-
sionless input parameters for the solution are the stratification parameter S, the inflow rate Q, and
the fraction of return flow, γ. For the circle, we also must provide β = H/r (ratio of height of
ambient to radius). In a real system the Reynolds number is also available, Re = UH/νc, where νc is
the kinematic viscosity of the current.

C. Similarity solutions

We consider gravity currents of volume V = Qtα. The fixed flux case, α = 1, is excepted
from this discussion. The reason is that the results derived above for this case are already a simi-
larity solution. The similarity solutions for α , 1 must be subjected to various restrictions, and are
considered separately.

After significant propagation, the influence of the initial conditions diminishes, and the ratio
hN/H is sufficiently small to justify a constant Fr = Fr(0) approximation. We seek a similarity
solution of the form

xN = Ktδ, h(ξ, t) = Ω(t)H (ξ), u(ξ, t) = ẋNU (ξ), (23)

where ξ = x/xN(t), the upper dot means time derivative, and K, δ are positive constants. The
boundary conditions areU (1) = 1, Eq. (13), and volume conservation,

V =
 xN

0
A(h)dx = xN

 1

0
A[Ω(t)H (ξ)]dξ = Qtα. (24)
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The fixed-volume case corresponds to α = 0, Q = V0.
The analysis proves that such similarity solution exists only under the following restric-

tions (the exception is the constant-flux α = 1 current). First, we must use a power-law cross
section, f (z) = zσ (the standard f (z) = 1 included), with V0 = 1/(σ + 1). In this case, A(h) =
h1+σ/(1 + σ), and the integral in Eq. (24) attains a self-similar form. Second, the ambient is either
homogeneous S = 0 or with maximum stratification S = 1. This is needed to obtain the similarity
form of the uN condition. Under these conditions, solutions can be obtained with

δ = (2σ + 2 + α)/(2σ + 3) for S = 0, (25)

δ = (σ + 1 + α)/(σ + 2) for S = 1. (26)

In particular, simple analytical self-similar solutions are obtained for α = 0. For more details see the
work of Zemach and Ungarish,35 Sec. V, and Ungarish,29 Sec. 5 (note the rescaling (5.1) there).

The similarity solutions are relevant to the experiments under consideration in this paper:
power-law f (z) = bzσ with σ = 1/2 approximates the circular channel under consideration in this
paper, while σ = 0 reproduces the rectangular cross section. The theoretical exponents are δ = 3/4
and δ = 3/5 for the lock-release experiments in the circular cross section channel for S = 0 and
S = 1, respectively. For α = 2 the theoretical exponent for S = 0, 1 is δ = 5/4, 7/5, respectively.

Again, a notable exception is the constant-flux α = 1 current. In this case Ω = const., δ = 1,
and some of the previous restrictions can be relaxed. The slug-like self-similar propagation with
constant hN ,uN , see Sec. II B, is an exact solution for a general f (z), any S, and finite hN/H .

The main deficiency of the similarity solutions is the vague connection with realistic initial/
boundary conditions of the current. For example, (i) in the lock-released current the shift of t by
a constant to a “virtual origin” does not affect the solution; (ii) for constant inflow, the theoretical
height and speed at the source must be the same as at the nose, and this is incompatible with inflow
conditions in practical systems. The assumption is that the similarity solutions are applicable after
some adjustment in time or distance.

D. Internal waves

A peculiar characteristic of GCs propagating in a density stratified fluid is the generation of in-
ternal waves which can interact with the current modifying its behaviour in a complex manner. The
advancing nose of the current displaces the isopycnal layers, and the disturbance propagates with a
celerity related to the density stratification and to the geometry of the ambient fluid. The fastest in-
ternal waves in straight channels of depth varying only in the transverse direction are the long waves
with k → 0, where k is the wavenumber, because dc2/dk2 < 0 (see Ref. 34, Theorem 2 in Sec. 17).
Since in many practical situations the GCs front speed is comparable with the internal wave celerity,
two regimes of propagation are forecast: (i) supercritical if uN > c, and (ii) subcritical if uN < c.
Extensive analysis on the effects of stratification of GC speed was performed by Ungarish24 with
subsequent extension by Helfrich.33 The comparison with the experiments by Maxworthy et al.18

of lock-released GCs in a linearly stratified ambient fluid indicates that supercritical currents are
essentially not influenced by the internal waves, which propagate behind the front and eventually
modify the shape of the current, enhancing mixing. For subcritical GCs the scenario looks different,
with the current experiencing an inviscid interaction with the internal waves; the interaction is
presently not described by the SW solution. The current experiences a strong deceleration when
coupling with internal waves is at a maximum, and eventually recovers its previous speed.

However, it appears that except for the speed and the height, the GCs are slightly influenced by
the internal wave generation, with a limited transfer of energy from the current toward the internal
waves (Ungarish and Huppert31). In order to explain experimental results, a comparison of the front
speed and of the wave celerity is suggested. While for a rectangular cross section channel with
linear stratification the fundamental mode celerity is given in Ref. 2 as crect = N H/π (dimensional
values), for a circular cross section channel the analysis by Yih34 is rich in details for the different
modes but is lacking the dispersion relation. Hence, the analysis by Yih34 has been extended in the
present paper (see Appendix B), and the fundamental mode celerity is found equal to c = Nr/(2√2)
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(dimensional values). A series of experiments (see Appendix C) have been performed to measure
the internal waves celerity in the circular cross section channel in order to verify the theory.

In summary, while analyzing the experimental results we must keep in mind the fundamental
simplifications underlying the mathematical model: the current is a thin layer; the pressure is
hydrostatic; there is pressure continuity at the interface, except for the jump at the front (nose);
viscous effects inside the current and at the boundaries are negligible (large Reynolds number); the
system is Boussinesq; the stratification of the ambient is linear; no mixing and entrainment effects
are considered; and no coupling between GC and internal waves is modeled, in both subcritical
and supercritical regimes. Moreover, here we use a “one-layer model” which neglects the dynamic
effects of the “return” flow in the ambient above the current.

III. THE EXPERIMENTS

A. Experimental setup and methodology

A series of experiments were performed to test the validity of the SW mathematical models
for the gravity current propagating into a stratified ambient fluid, both in rectangular and non-
rectangular geometries. To this end, lock-release and constant inflow experiments were carried out
in a circular transparent thermoplastic tube of internal radius r = 9.5 cm and total length 605 cm for
constant inflow experiments and 500 cm for lock-release experiments; in the latter case, the lock
length was 100 cm (see Ref. 14 for additional details). A second set of constant inflow experiments
was carried out in a rectangular PVC channel of 14 × 14 cm2 cross section and length 504 cm. See
Figure 2 for the different setups. A third set of experiments was carried out in the circular cross
section channel (r = 9.5 cm and total length 605 cm) for linearly increasing inflow (α = 2) to test
self-similar solutions for S = 0,1.

The density stratification of the fluid was obtained adopting the technique detailed in Ref. 7,
with two vane pumps, each controlled by an inverter and with flow rate measured by a turbine
meter (see Figure 3). The first vane pump transferred the fluid from the saline storage tank into
a mixing tank, initially filled with fresh water. Efficient mixing was obtained with a submerged
pump located in the mixing tank. The second vane pump transferred the fluid from the mixing
tank to the experimental channel. According to Hill,7 the target flow rates Q1 and Q2 in the two
circuits are a function of the channel shape and desired density profile, generally vary over time, and
are obtained upon solving an inverse problem involving the mass conservation equations for water
and salt in the storage and mixing tanks; our formulation of the model includes the dependence
of salt water density on salt concentration and temperature. These target flow rates were reached
controlling the pumps with a Proportional Integral Derivative (PID) closed loop feedback system
acting on the inverters: the turbine meter signal is acquired with a Data Acquisition (DAQ) board
and the instantaneous influx rate is compared to the target influx rate. The difference between the
measured and the target influx rate is minimized by generating a correction signal to the vane pump
rotation rate. The fluid from the mixing tank was injected at the bottom of the channel, employing
three pipes of 8 mm internal diameter located in different sections and with a low flow rate (less
than 30 cm3 s−1); this setup ensures a limited velocity at the exit section, avoiding excessive mixing,
and requires a reasonable time to fill the channel (usually less than 2 h). The density stratification
in the channel was measured by extracting samples of ≈50 cm3 volume at 7 different depths using
a syringe attached to a needle, whose tip was positioned with a vernier. The density of the samples
was measured with a hydrometer with an uncertainty of 10−3 g cm−3. The ability of the system to
reproduce the requested linear density profile was checked for all the experiments; the agreement
between the requested and measured density profiles was very good. Figure 4 shows the experi-
mental density profiles for tanks with (a) semicircular and (b) rectangular cross section. For the
constant inflow and for the linearly increasing inflow experiments, it was also necessary to drain
the ambient fluid at the end section of the channel (all the experiments are in the configuration of
no return flow, with γ = 0). While in similar experiments with a homogeneous ambient fluid a weir
could be efficiently used (see Longo et al.13), a stratified fluid required an active aspiration system
with several small diameter pipes (12 in the present experiments) draining from the whole vertical
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FIG. 2. Schematic of the experimental equipment. (a) Circular channel for lock-release experiments; (b) rectangular and
(c) circular channel for constant inflow experiments.

section, in order to avoid the “selective withdrawal” (Koh,11 Turner23). The 12 pipes were connected
to a centrifugal pump controlled by an inverter, with a PID feedback chain with the sensor repre-
sented by the fluid level recorded by an Ultrasonic distance meter (Turck Banner Q45UR) with an
accuracy of 0.03 cm and a time response of 10 ms (see, e.g., Ref. 12 for details). The parameters of

FIG. 3. Schematic of the filling system for generating a stratification in the experimental tank.
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FIG. 4. Typical mass density profiles produced in the experimental tank: (a) semicircular and (b) rectangular cross section.

TABLE I. Parameter values for lock-release experiments in a circular channel. h0 is the dense current initial depth in the
lock, the internal radius is r = 9.5 cm, and the ambient fluid depth is H = r . R−1= (ρc−ρ0)/ρ0, g ′= (R−1)g is the reduced
gravity, S = (ρb−ρ0)/(ρc−ρ0) is the stratification parameter, N is the buoyancy frequency, Re0=Uh0/νc is the Reynolds
number with νc the kinematic viscosity of the denser fluid, andU =


g ′h0 and T = x0/U are the velocity and the time scale,

respectively. x0= 100 cm is the length of the lock. The uncertainty of the measurements and of the parameters is discussed in
Sec. III B.

h0 R−1 g ′ N Re0 U T

Expt. (cm) (%) (cm s−2) S (s−1) (×103) (cm s−1) (s)

61 3.2 10.0 98.1 0 0 4.9 17.7 5.645
64 3.2 9.77 95.8 0.287 1.70 4.8 17.5 5.712
57 3.2 9.69 95.0 0.499 2.24 4.8 17.4 5.735
73 3.2 9.33 91.5 0.701 2.60 4.7 17.1 5.845
59 3.2 9.03 88.6 0.873 2.85 4.6 16.8 5.940
70 3.2 9.33 91.5 0.951 3.03 4.7 17.1 5.844
69 3.2 9.48 92.9 0.985 3.10 4.8 17.2 5.799
66 3.2 9.48 93.0 1.000 3.13 4.8 17.3 5.797
54 4 10.0 98.1 0 0 6.8 19.8 5.049
55 4 9.79 96.0 0.274 1.67 6.8 19.6 5.102
49 4 9.77 95.8 0.502 2.25 6.8 19.6 5.108
53 4 9.68 94.9 0.605 2.46 6.7 19.5 5.133
50 4 9.54 93.6 0.706 2.64 6.7 19.3 5.169
51 4 9.28 91.0 0.808 2.78 6.6 19.1 5.241
52 4 9.60 94.2 0.902 2.99 6.7 19.4 5.152
56 4 9.85 96.6 1.000 3.19 6.8 19.7 5.087
63 5 10.0 98.1 0 0 9.5 22.1 4.516
62 5 9.70 95.2 0.290 1.70 9.4 21.8 4.585
58 5 9.78 95.9 0.467 2.17 9.4 21.9 4.566
74 5 9.39 92.1 0.566 2.34 9.3 21.5 4.659
76 5 9.59 94.0 0.583 2.40 9.3 21.7 4.613
60 5 9.68 94.9 0.770 2.77 9.4 21.8 4.590
67 5 9.54 93.6 0.842 2.88 9.3 21.6 4.623
71 5 9.53 93.4 0.912 2.99 9.3 21.6 4.626
65 5 9.60 94.2 0.942 3.06 9.4 21.7 4.609
75 5 9.55 93.7 0.937 3.04 9.3 21.6 4.621
72 5 9.49 93.1 0.958 3.06 9.3 21.6 4.635
68 5 9.39 92.1 1.000 3.12 9.3 21.5 4.659
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FIG. 5. Circular channel, lock-release experiments. (a) The experimental speed of the GC front during the slumping phase
(symbols), compared with the theoretical predictions (curves). The dashed curves delimit the confidence band of the model.
The theoretical celerity of internal waves c = 0.353S1/2(r/h0)1/2 is also shown (dotted curves) for the three different
values of h0. (b) The relative error of the experimental speed uN−exp with respect to the theoretical prediction uN−theory,
∆uN = (uN−exp−uN−theory)/uN−theory. The line is an interpolation of the relative errors for the three series of experiments.
The error bars indicate one standard deviation.

the PID were adjusted in order to guarantee a limited variation of the free surface level near the end
section of the channel.

The current fluid was salt water added with aniline dye and had a mass density equal to
1.100 g cm−3 in all the experiments except in the 6 experiments with linearly increasing inflow
(α = 2), where the mass density was 1.060–1.080 g cm−3.

The position of the current front was measured with a full HD video camera (Canon Legria HF
20, 1920 × 1080 pixels) with a data rate of 25 fps. The video camera was moved parallel to the pipe
or from the top of the rectangular channel in order to get the nose of the current in the Field of View
(FOV). A grid stuck to the bottom allowed the referencing of the front position, with an overall
uncertainty of 0.2 cm.

For the lock-release experiments conducted in the circular channel, a gate was opened fast after
filling the lock and the downstream pipe. A micro-switch closed by the gate gave the trigger signal
to an LED visible in the Field of View (FOV) of the video camera in order to get the time reference.
For the constant inflow experiments and for the linearly increasing inflow experiments, a pipe with
its axis parallel to the channel was inserted into the channel and connected to a centrifugal pump
controlled by an inverter. The flow rate was thus measured through a turbine meter with an overall
accuracy equal to 1% of the instantaneous value.
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FIG. 6. The distance of propagation of the currents measured from the gate lock section for lock-release in the circular
channel for some experiments. The solid line represents the similarity solution with xN ∝ t , the dashed line represents the
self-similar solution in inertial-buoyancy regime for S = 0 with xN ∝ t3/4, and the dotted line represents the self-similar
solution in inertial-buoyancy regime for S = 1 with xN ∝ t3/5. The data of different experiments have been decimated and
translated in the vertical for a better visualization.

A series of special experiments was devoted to the measurements of the internal waves in the
circular channel. The synthetic schlieren method described in Ref. 5 was used, with a mask of
randomized array of dots mimicking the tracers in Particle Image Velocimetry (PIV) technique and
positioned between the light source and the channel. The video camera was in a fixed position on
the opposite side of the channel, recording frame by frame the apparent displacement of the fixed
dots due to the variation of the refraction index of the fluid. A PIV software was adopted to measure
the apparent displacement of the dots, which is proportional to the square of the buoyancy frequency
(see, e.g., Ref. 1) and hence is representative of the perturbation of the density field. The spatial
resolution achieved with the adopted setup was of less than 0.2 cm. Some tests were performed with
a Canon EOS full frame 5616 × 3744 pixels, for a better spatial resolution. The photo-camera was
controlled by a PC through a DAQ, taking two pictures per second. The experimental arrangement
and the details are given in Appendix C.

TABLE II. Parameter values for constant inflow experiments in a rectangular channel. The width of the channel is b = 14 cm
and the ambient fluid depth is H = 11 cm. Re0=UH/νc is the Reynolds number with νc the kinematic viscosity of the
denser fluid, U =

√
g ′H and T =H/U are the velocity and the time scale, respectively, and Q is the influx rate made

dimensionless with respect to H2U . All the experiments are in no return flow condition, with γ = 0. For other symbols, see
caption of Table I.

R−1 g ′ N Re0 U T

Expt. Q (%) (cm s−2) S (s−1) (×103) (cm s−1) (s)

38 0.036 10.0 98.1 0 0 31.1 32.8 0.335
36 0.037 9.46 92.8 0.165 1.18 30.3 31.9 0.344
35 0.037 9.55 93.6 0.291 1.57 30.4 32.1 0.343
34 0.038 9.18 90.0 0.439 1.90 29.8 31.5 0.350
32 0.038 9.25 90.7 0.636 2.29 30.0 31.6 0.348
33 0.038 9.11 89.3 0.782 2.52 29.7 31.3 0.351
37 0.038 9.13 89.6 0.916 2.73 29.8 31.4 0.350
45 0.020 10.0 98.1 0 0 31.1 32.8 0.335
43 0.020 9.76 95.7 0.257 1.49 30.8 32.4 0.339
44 0.021 9.62 94.4 0.317 1.65 30.6 32.2 0.341
41 0.021 9.64 94.5 0.491 2.05 30.6 32.2 0.341
39 0.021 9.37 91.9 0.689 2.40 30.2 31.8 0.346
42 0.021 9.41 92.3 0.691 2.41 30.2 31.9 0.345
46 0.020 9.71 95.3 0.888 2.77 30.7 32.4 0.340

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  160.78.30.70

On: Thu, 29 Sep 2016 17:22:46



096602-13 Longo et al. Phys. Fluids 28, 096602 (2016)

B. Uncertainty in measurements and parameters

The mass density of the fluid was measured by a hydrometer with an uncertainty of 10−3 g cm−3.
The correspondent uncertainty for the stratification parameter S = (ρb − ρ0)/(ρc − ρ0) is ∆S/S =
1.6%–8.5%. The level of the ambient fluid was detected with an accuracy of 0.1 cm inducing a
relative uncertainty ∆H/H ≤ 1.1% and ∆β/β ≤ 2.2% by assuming that the radius of the channel
had an absolute uncertainty of 0.1 cm. The velocity scale had an uncertainty ∆U/U ≤ 2.4% and the
time scale had an uncertainty equal to ∆T/T = 3.4%. The influx rate was measured with uncertainty
equal to 1% of the instantaneous value and the dimensionless influx rate had an uncertainty equal
to ∆Q/Q ≤ 5.5%. By assuming an uncertainty of 1% in the value of the kinematic viscosity of the
dense fluid, the Reynolds number had an uncertainty equal to ∆Re/Re ≤ 5.2%.

The uncertainty in the front speed measurements has been assumed equal to the uncertainty of
the angular coefficient of the line interpolating the front position at different time. Most measure-
ments are affected by an uncertainty ≤6.0%, a few have an uncertainty ≤10.0%.

The uncertainty analysis has also been extended to the theoretical model, by assuming that
the model parameters are affected by a known uncertainty. A Monte Carlo simulation has been
performed by describing the parameters as random variables with Gaussian distribution, with

FIG. 7. Rectangular channel, constant inflow experiments. (a) The experimental speed of the GC front during the slumping
phase (symbols), compared with the theoretical predictions (curves). The dashed curves delimit the confidence band of
the model. The dotted curve of equation c = 0.318S1/2 is the theoretical celerity of internal waves (Baines2). (b) The
relative error of the experimental speed uN−exp with respect to the theoretical prediction uN−theory, ∆uN = (uN−exp−
uN−theory)/uN−theory. The two lines are an interpolation of the relative errors for the two series of experiments. The error
bars indicate one standard deviation.
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samples of 1000 elements. The variability of the theoretical model predictions is represented by
bands corresponding to one standard deviation of the population of output data.

C. Results and discussion

Table I lists the parameters for the lock-release experiments in a circular channel, with three
different values of h0 and several different values of the stratification parameter S. Figure 5(a) shows
the theoretical and the experimental front speed against S. The initial Reynolds number was larger
than ≈4600 ensuring an inviscid regime for most of the space travelled by the current. The front
speed decreases for increasing S and follows the theoretical parabolic reduction. The relative error
shown in Figure 5(b) is always less than 30% and is generally negative (i.e., the experimental front
speed is smaller than the theoretical one) except for S > 0.8. For experiments with the minimum
initial depth in the lock (h0 = 3.2 cm), also corresponding to the minimum Reynolds number, for
S > 0.9 the error increases again, presumably due to the viscosity effects. In order to evaluate the
effects of internal waves, their theoretical celerity is also drawn. The theoretical celerity of internal
waves is computed according to the model detailed in Appendix C, and is equal to c = Nr/(2√2)
(dimensional values). The dimensionless counterpart is c = S1/2/(2√2)(r/h0)1/2, where (r/h0)1/2

derives from the adopted velocity scale.
The GCs of the present experiments are generally in supercritical regime (the front speed

is greater than the wave celerity), except for S → 1, where the front speed and the internal
waves celerity become comparable. Figure 6 shows the distance of propagation for some selected

TABLE III. Parameter values for constant inflow experiments in a circular channel. The internal radius is r = 9.5 cm, the
channel length is l = 605 cm, and the ambient fluid depth is H = r . Re0=UH/νc is the Reynolds number with νc the
kinematic viscosity of the denser fluid, U =

√
g ′H and T =H/U are the velocity and the time scale, respectively, and Q is

the influx rate made dimensionless with respect to H2U . All the experiments are in no return flow condition, with γ = 0. For
other symbols, see caption of Table I.

R−1 g ′ N Re0 U T

Expt. Q (%) (cm s−2) S (s−1) (×103) (cm s−1) (s)

11 0.052 10.0 98.1 0 0 25.0 30.5 0.311
8 0.053 9.68 95.0 0.136 1.16 24.6 30.0 0.316
9 0.053 9.75 95.6 0.268 1.64 24.7 30.1 0.315
10 0.053 9.75 95.6 0.278 1.67 24.7 30.1 0.315
7 0.053 9.80 96.1 0.287 1.70 24.7 30.2 0.314
14 0.054 9.36 91.7 0.444 2.07 24.2 29.5 0.322
15 0.053 9.59 94.0 0.534 2.30 24.5 29.9 0.318
12 0.053 9.72 95.3 0.583 2.42 24.6 30.1 0.316
6 0.053 9.77 95.8 0.591 2.44 24.7 30.2 0.315
17 0.054 9.38 91.9 0.619 2.45 24.2 29.6 0.321
13 0.054 9.46 92.7 0.624 2.47 24.3 29.7 0.320
16 0.053 9.69 95.0 0.632 2.51 24.6 30.0 0.316
24 0.055 9.10 89.3 0.691 2.55 23.8 29.1 0.326
48 0.053 9.79 96.0 0.791 2.83 24.7 30.2 0.315
47 0.054 9.37 91.9 0.820 2.82 24.2 29.5 0.322
28 0.054 9.34 91.5 0.852 2.86 24.2 29.5 0.322
30 0.055 9.18 90.1 0.871 2.87 24.0 29.3 0.325
25 0.024 10.0 98.1 0 0 25.0 30.5 0.311
26 0.024 9.45 92.7 0.276 1.64 24.3 29.7 0.320
19 0.024 9.89 97.0 0.462 2.17 24.9 30.4 0.313
20 0.025 9.19 90.1 0.565 2.32 24.0 29.3 0.325
18 0.024 9.41 92.3 0.574 2.36 24.2 29.6 0.321
21 0.025 9.22 90.5 0.695 2.57 24.0 29.3 0.324
22 0.024 9.60 94.1 0.781 2.78 24.5 29.9 0.318
27 0.025 8.88 87.1 0.899 2.87 23.6 28.8 0.330
31 0.024 9.65 94.6 0.926 3.04 24.6 30.0 0.317
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experiments in a log-log plot with decimated experimental points and with a vertical translation of
the three groups (corresponding to the three different values of h0) for a better visualization. The
solid line indicates the constant speed in the slumping phase, whereas the other two lines refer to
the self-similar solutions for the S = 0 case with xN ∝ t3/4 (see Ref. 14 for more experiments with
S = 0), and the S = 1 case with xN ∝ t3/5. The behaviour is regular, with reduced front speed for
increasing S. In particular, the three experiments with S = 1 show an evident change of front speed
at t ≈ 4, with a progressive adaptation to the dotted curve. The overall agreement between theory
and experiments is very good.

The parameters for the experiments with constant inflow (α = 1) in a rectangular channel are
reported in Table II. The experimental (symbols) and the theoretical (lines) front speed for two
different influx rates and for different values of the stratification parameter S are shown in Figure
7(a). The theoretical curve correctly interprets the experiments, with larger speed for larger influx
rate and smaller S. The theoretical celerity of the internal waves is also represented in the same plot.
It is computed according to the theoretical value for the first mode, c = N H/π (dimensional value,
see Ref. 2); the latter is made non-dimensional with respect to U and expressed as a function of
the stratification parameter as c = S1/2/π ≡ 0.318S1/2. For S < 0.6–0.7 the current is supercritical,
while it becomes subcritical for S → 1. However, there is no evidence of a significant effect of the

FIG. 8. Circular channel, constant inflow experiments. (a) The experimental speed of the GC front during the slumping
phase (symbols), compared with the theoretical predictions (curves). The dashed curves delimit the confidence band of
the model. The dotted curve of equation c = 0.353S1/2 is the theoretical celerity of internal waves. (b) The relative error of the
experimental speed uN−exp with respect to the theoretical prediction uN−theory, ∆uN = (uN−exp−uN−theory)/uN−theory. The
two lines are an interpolation of the relative errors for the two series of experiments. The error bars indicate one standard
deviation.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  160.78.30.70

On: Thu, 29 Sep 2016 17:22:46



096602-16 Longo et al. Phys. Fluids 28, 096602 (2016)

FIG. 9. The distance of propagation of the currents measured from the inlet for circular and rectangular cross section channel
for some experiments. Different data symbols correspond to different experiments with a constant Q at the source. The solid
line represents the slumping phase with xN ∝ t . The data of different experiments have been decimated and translated in the
vertical for a better visualization.

internal waves on the front speed. The relative error, shown in Figure 7(b), is generally less than
30% and reduces for S → 1.

The parameters for the third set of experiments (constant inflow in a circular cross section) are
listed in Table III. Some experiments are characterized by identical values in order to check the
repeatability. The comparison between theory and experiments is shown in Figure 8(a). The trend (a
decreasing front speed for increasing S) is correctly captured for the two series with different influx
rates. A comparison with the theoretical celerity of internal waves shows a different behaviour for
the two series: the experiments with lower influx rate (Q = 65 cm3 s−1) are apparently unaffected
by the internal waves, whereas the experiments with larger influx rate (Q = 144 cm3 s−1) show a
remarkable influence of the internal waves. The front speed increases in subcritical regime and
almost equals the celerity of the internal waves. Figure 8(b) reports the relative error in the front
speed, which reduces for increasing values of the stratification parameter S and is generally less
than ≈30% and less than ≈40% for the lower and the higher influx rate experiments. The correct
interpretation of the different behaviour of the two series of experiments requires a coupling anal-
ysis between the front of the current and the internal waves, and is beyond the capability of the
simplified theoretical model used here.

Figure 9 shows the distance of propagation of some selected experiments with constant inflow
for rectangular and circular cross section, respectively. The solid line indicates the theoretical solu-
tion with xN ∝ t; it is seen that after an initial adjustment the experiments show a remarkable
agreement with the theory.

TABLE IV. Parameter values for linearly increasing inflow experiments (α = 2) in a circular channel, for S = 0 and S = 1.
The theoretical self-similar solution predicts xN ∝ t5/4 and xN ∝ t7/5, respectively. For symbols, see caption of Table III. Q
is made dimensionless with respect to HU2.

Q R−1 g ′ N Re0 U T

Expt. (×10−5) (%) (cm s−2) S (s−1) (×103) (cm s−1) (s)

87 2.8 6.00 58.8 0 0 19.4 23.6 0.402
88 4.7 6.00 58.8 0 0 19.4 23.6 0.402
89 6.6 6.00 58.8 0 0 19.4 23.6 0.402
86 2.1 8.13 79.7 1 2.89 22.5 27.5 0.345
84 3.5 8.16 80.0 1 2.90 22.6 27.6 0.345
85 4.7 8.38 82.2 1 2.94 22.9 27.9 0.340
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FIG. 10. The distance of propagation of the currents for the circular channel for three experiments with S = 0,1 and a linearly
increasing influx (α = 2). The dashed and solid lines represent the theoretical self-similar behaviour with xN ∝ t5/4 (S = 0)
and xN ∝ t7/5 (S = 1).

Table IV lists the parameter for two special series of experiments in a circular cross section
channel, with S = 0 and S = 1, respectively. The inflow rate is linearly increasing in time (α = 2),
a condition which allows self-similar propagation. The comparison with the theoretical front speed
is shown in Figure 10, where the experimental asymptotic front position (symbols) follows the
theoretical front position (bold and dashed lines) with a satisfactory agreement.

IV. CONCLUSIONS

We investigated the behaviour of high-Reynolds-number gravity currents that propagate into
a linearly stratified ambient. Several configurations were analyzed, considering the following cur-
rents: (i) released from a lock or sustained by a constant or variable source; (ii) flowing in channels
of different shapes (rectangular or circular); and (iii) intruding into ambients with a different strati-
fication parameter S. The study is focused on laboratory experiments, whose results were compared
with predictions of shallow-water models; for some of these, a novel formulation was obtained as an
extension of earlier models. The main novelty of our work is the non-rectangular shape of the cross
section, and the enhanced experimental equipment. We used a 605 cm long tank, with a special
arrangement of pumps that ensured a smooth withdrawal of the stratified fluid at the outflux bound-
ary. Special attention was given to the internal-stratification waves. This enhances the confidence
in the accuracy of our observations. To provide additional support to the theory, experiments were
performed also in a tank with standard rectangular cross section. To the best of our knowledge,
experiments with constant inflow in a stratified ambient fluid in a rectangular cross section channel
are also a novelty. A last set of experiments was devoted to self-similar currents in circular cross
section. Self-similarity is confirmed, within the uncertainty of the experiments, for S = 0 and S = 1
and time varying influx (α = 2).

In general, the propagation of the current is in fair agreement with the theoretical predictions.
The significant influence of the stratification parameter S and cross-section shape was confirmed
by the experiments. In accord with theory, a lock-released current displays a “slumping” stage of
propagation with constant uN , whose value decreases as the stratification S increases. The theory
overestimates uN typically by 20%–30%, which is consistent with previously published counterpart
results for non-stratified and rectangular-container systems. The speed of propagation of the in-
fluxed current displays the same behavior. However, for large-influx cases, an unexpected deviation
was noticed: at some larger values of S, the speed slightly increases with S. This discrepancy is
attributed to the influence of the internal waves; the available theoretical models assume an unper-
turbed ambient, and do not account for this influence. This interaction between the waves and the
gravity current supported by influx is an interesting and complicated topic whose investigation must
be left for future studies. Some disturbances are also attributed to the free surface perturbations
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(see Ref. 13) which affect the ambient fluid dynamics and induce further discrepancies between the
theoretical model (a fixed lid is assumed in the model) and the experiments. A further refinement
of the model shall be based on corrections for the shape of the velocity profiles, for mixing and
entrainment effects, for energy dissipation. In particular, mixing effects are expected to be particu-
larly relevant for a truly 3-D flow of a GC in a circular cross section. In view of all these disturbing
effects, the experimental relative differences with the theory are very limited and give confidence of
the correctness of the simplifying assumptions and of the strength of the model. We highlight that
the circular shape of the cross section does not merely imply a slight modification of the equations
in the models, and it is not clear a priori if the new geometry can be treated in the same way of
the classical flat-bottom current. Also, the internal waves propagate with a close feedback from the
geometry of the channel, due to the wall reflections: in all situations where the interaction between
gravity currents and internal waves is relevant, the results are expected to be strongly dependent on
the shape of the cross section.

APPENDIX A: GEOMETRICAL EXPRESSIONS FOR A CIRCULAR CROSS SECTION

The Froude number can be expressed as

Fr2 =
2(1 − ϕ)

1 + ϕ


1 − ϕ +

J(h)
hA(1)


, (A1)

ϕ = A(h)/A(1), (A2)

where h is the depth of the current, A(h) the area occupied by the current, A(1) the area occupied by
the ambient fluid, and J(h) a function of h, all in dimensionless form. For a circular cross section
with a fixed given radius, represented by y = f (z) = (2r z − z2)1/2 (r is the dimensionless radius),
A(h) and J(h) are

A(h) =
 h

0
2(2r z − z2)1/2dz =


(h − r)(2rh − h2)1/2 − r2 arcsin(1 − h/r) + π

2
r2

, (A3)

J(h) = 2
 h

0
(2r z − z2)1/2zdz = −2

3
(2rh − h2)3/2 + r A(h). (A4)

APPENDIX B: ANALYTICAL MODEL FOR INTERNAL WAVES

Internal waves in finite-depth channels were examined by Yih34 (circular and elliptic cross
section) and Baines2 (rectangular cross section). However, the analysis by Yih does not recover the
dispersion equation of the waves. Here we recall the scheme and then evaluate the celerity of the
long waves.

We consider a circular cross section channel fully filled with a continuously stratified fluid. Let
u, v , and w be the velocity components along x, y and z, respectively, with x denoting the pipe axis
(assumed horizontal), z along the vertical and y perpendicular to both x and z. The centre of the
circle is at z = 0. The pressure is p and the density is ρ. The variables are decomposed into a (time)
average and a fluctuating component, indicated by a bar and a prime, respectively,

u = ū + u′, (B1a)
v = v̄ + u′, (B1b)
w = w̄ + u′, (B1c)
ρ = ρ̄ + ρ′, (B1d)
p = p̄ + p′, (B1e)

where dp̄/dz = −g ρ̄, and g is the acceleration of gravity. In the following we limit our analysis to a
fluid at rest, with zero average velocities.

By neglecting terms at lower orders, the linear momentum equations for inviscid fluids read

ρ̄u′, t = −p′,x, (B2a)
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ρ̄v ′, t = −p′, y, (B2b)

ρ̄w ′, t = −p′,z − gρ′, (B2c)

where the subscript indicates the partial derivative. The continuity equation is represented by

ρ′, t + ρ (u′,x + v ′, y + w ′,z) + w ′ρ̄,z = 0, (B3)

with the incompressibility equation (see Ref. 34),

ρ′, t + w ′ρ̄,z = 0. (B4)

Hence the continuity equation (B3) reads

u′,x + v
′
, y + w ′,z = 0. (B5)

By assuming that the fluctuating terms are proportional to e−iωt, where ω is the circular
frequency, (B2) and (B4) become

u′ =
p′,x

iωρ̄
, (B6a)

v ′ =
p′, y

iωρ̄
, (B6b)

w ′ =
p′,z + gρ

′

iωρ̄
, (B6c)

w ′ =
iωρ′

ρ̄,z
, (B6d)

where (B6c) and (B6d) yield

w ′ = −iω
p′,z

ρ̄ω2 + g ρ̄,z
. (B7)

Combining (B6) with (B5) yields

p′,xx + p′, y y + ω
2 ρ̄

(
p′,z

ω2 ρ̄ + g ρ̄,z

)
,z

= 0. (B8)

If we consider a linear density stratification of the form ρ̄(z) = ρ0(1 − βz) with a weak dependence
on z, within the Boussinesq approximation (i.e. ρ0/ρ̄ ≈ 1), Eq. (B8) reads

p′,xx + p′, y y +
ω2

g β − ω2 p′,zz = 0. (B9)

By assuming the pressure fluctuation as a disturbance propagating along x,

p′(x, y, z) = f (y, z)eik x, (B10)

where k stands for the wavenumber and f has the dimension of a pressure, Eq. (B9) reads

f, y y − λ2 f,zz − k2 f = 0, (B11)

where

λ2 =
ω2

g β − ω2 . (B12)

If F(x, y, z) = 0 is the generic function describing the boundary, the kinematic condition at the
boundary reads

F,xp,x + F, yp, y − λ2F,zp,z = 0 on F = 0, (B13)

which for a circular cross section channel F ≡ y2 + z2 − r2 = 0 yields

y f, y − λ2z f,z = 0 on F = 0. (B14)

In order to solve the partial differential equation (B11) with the boundary condition (B14), it is
convenient to introduce the new coordinates (µ, ν),
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y = r
sin µ sin ν

sin α
, z = r

cos µ cos ν
cos α

, (B15)

where ω/
√
g β = cos α and α is in the range [0, π/2]. In the new coordinates µ - ν, the internal

part of the circle y2 + z2 − r2 < 0 becomes the rectangle −α ≤ µ ≤ α, α ≤ ν ≤ π − α, and the four
segments,




µ = −α, α ≤ ν ≤ π − α,

µ = α, α ≤ ν ≤ π − α,

ν = α, −α ≤ µ ≤ α,

ν = π − α, −α ≤ µ ≤ α,

map the circle. The governing Equation (B11) becomes

fµµ − fνν −
k2r2

2 cos α

(
cos 2ν − cos 2µ

)
f = 0. (B16)

The boundary condition (B14) reads

∂ f
∂µ
= 0, at µ = −α,α, (B17a)

∂ f
∂ν
= 0, at ν = α,π − α. (B17b)

A possible solution can be expressed as f (µ, ν) = F(µ)G(ν) and Eq. (B16) is split into the system

F ′′ − (a − q cos 2µ)F = 0, (B18a)
G′′ − (a − q cos 2ν)G = 0, (B18b)

in which q = −k2r2/2cos2α and a is a constant arising from the separation of variables.
The equations (B18) are the canonical form of the Mathieu equations. The solution is reported

in Yih,34 with α obtained by the boundary conditions in Eq. (B17), but the dispersion relation is not
computed.

In order to find the dispersion relation, we recall the solution obtained for the cosine-type
functions by considering m = 0 (see Ref. 15, Sec. 2.150]),

F = 1 − 1
2

q cos 2µ +
1

32
q2 cos 4µ +O(q3), (B19a)

G = 1 − 1
2

q cos 2ν +
1

32
q2 cos 4ν +O(q3). (B19b)

Imposing the boundary conditions neglecting the terms O(q3) results in

d F
d µ

����µ=±α
≡ ±

(
q sin 2α − 1

8
q2 sin 4α

)
= 0, (B20a)

d G
d ν

����ν=α,π−α
≡ ±

(
q sin 2α − 1

8
q2 sin 4α

)
= 0, (B20b)

with the solution,

q =
4

2cos2α − 1
. (B21)

Substituting q = − k2r2

2cos2α
with cos α = ω/

√
g β in Eq. (B21) yields

c =
r
√
g β

√
8 + 2r2k2

. (B22)

The buoyancy frequency N2 = −(g/ρ)∂ρ/∂z for a linearly stratified fluid becomes N2 ≈ g β by
means of the Boussinesq approximation, and Eq. (B22) gives

c =
Nr

√
8 + 2r2k2

(B23)
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equal to

c =
Nr

2
√

2
for k → 0 (B24)

in the long wave approximation. For comparison, we recall that the first mode of long hydrostatic
internal waves in a fluid at rest into a rectangular channel of height H has a celerity (Baines2),

crect =
N H
π

, (B25)

and propagates faster than in the circular cross section of radius r = H/2.
If we consider a semi-circle with a lid at the top, we can still use the transformation (B15) with

the rectangle in the µ − ν plane −α < µ < α, π/2 < ν < π − α. The semicircle is represented by the
function F(y, z) ≡ z −


r2 − y2 = 0 with −r < y < r and the lid by the function Fl(y, z) ≡ z = 0

with −r < y < r .
The boundary condition (B13) then becomes

y f, y − λ2z f,z = 0 on F = 0, z < 0, (B26)

f,z = 0 on Fl = 0 − r < y < r. (B27)

It can be demonstrated that adopting the same approach already used for the full circle, the celerity
has still the expression given by Eq. (B23).

Let us continue the analysis about internal waves in circular channels. We deal with the
following solutions of F and G:

F = 1 − 1
2

q cos 2µ +
1
32

q2 cos 4µ +O(q3), (B28a)

G = 1 − 1
2

q cos 2ν +
1

32
q2 cos 4ν +O(q3), (B28b)

which combined yield

f = F G = (1 − 1
2

q cos 2µ)(1 − 1
2

q cos 2ν) + 1
32

q2 cos 4µ +
1

32
q2 cos 4ν +O(q3). (B29)

After some algebra we obtain

f = 1 +O(k2) (B30)

or

p′ = p0eik x, (B31)

where p0 is a constant. From the system (B6), we can compute the fluctuating velocity components
u′,v ′, and w ′,

u′ =
p′,x
ρ̄iω
=

p0

ρ̄c
eik x, (B32a)

v ′ = 0, (B32b)
w ′ = 0. (B32c)

The results of the system (B32) show that, at the leading order, only the component u′ is different
from zero and uniform in the cross section.

APPENDIX C: INTERNAL WAVES MEASUREMENTS

In order to check the theoretical model for internal waves celerity in a circular cross section
channel, a small set of experiments was performed by generating the internal waves with a small
vertical paddle. The experimental arrangement is shown in Figure 11. The images have been pro-
cessed with a PIV software in order to detect the apparent displacement induced by the fluid density
perturbation, proportional to ∆N2. At a given section, the time series of the apparent displacement
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FIG. 11. (a) Front view of the towing apparatus. The motor is at one end of the tank and drives an iron cable balanced by a
weight, moving the float with the lid. The imposed motion is periodic; (b) side view of the configuration adopted for applying
the synthetic schlieren technique.

FIG. 12. (a) Sample horizontal time series of the horizontal displacement proportional to ∆N 2. The time series is taken at the
vertical location z = r/2 in the mid-section of the channel. The bands are the wave crests and troughs which move to the right
as time evolves. The imposed period of oscillation is T = 6 s. The values in the colorbar are in arbitrary scale; (b) the power
spectrum of the signal. The peak of the spectrum has coordinates ωp = 2π/6= 1.05 s−1, kp = 0.45 cm−1. The ambient fluid
has a linear density stratification with ρ0= 1.002 g cm−3 and ρb = 1.022 g cm−3, with H = r = 9.5 cm.
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FIG. 13. Internal waves celerity in a circular cross section channel half-filled with a linearly stratified fluid. The experimental
data (filled symbols) have been extrapolated to k → 0 (empty symbols). The bold line is the theoretical internal waves celerity
in the long wave approximation, and the dashed lines are the 95% confidence limits. The celerity is non-dimensional with
respect to

√
g ′H , with H = r = 9.5 cm, and S is computed with reference to ρc = 1.100 g cm−3.

is processed with a standard 2-D fast Fourier transform in the domain ω − k in order to extract the
coordinate of the peak (ωp, kp), where ω = 2π/T is the imposed pulsation and k = 2π/L is the wave
number. The imposed pulsation ωp is computed with reference to the period of oscillation of the
paddle; the peak wave number allows the computation of the internal wave celerity, c(k) = ωp/kp.

FIG. 14. The visualization of the perturbation of density ∇ρ′ for Experiment 75, a lock-released GC in a circular cross
section channel, S = 0.94, N = 3.04 s−1. The current is subcritical, with uN−exp= 0.372 < c = 0.47. The images are 1.5 s
apart, and the vertical red thick line near the bottom indicates the front position.
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FIG. 15. The visualization of the perturbation of density ∇ρ′ for Experiment 76, a lock-released GC in a circular cross
section channel, S = 0.58, N = 2.40 s−1. The current is supercritical, with uN−exp= 0.489 > c = 0.37. The images are 1.5 s
apart, and the vertical red thick line near the bottom indicates the front position.

Figure 12 shows the horizontal displacement time series at a given vertical location (ambient fluid
mid-depth, z = r/2) and the power spectrum. Figure 13 shows the experimental data (filled sym-
bols), corrected to account for k , 0 in order to estimate the long waves celerity, according to the
non-dimensional expression,

ck→0 = c(k)


1 +
1
4

k2 (C1)

where k is made dimensionless with respect to H = r = 9.5 cm. The curve is the theoretical internal
wave celerity computed in Appendix B. Figs. 14 and 15 show the perturbation of density for Exper-
iment 75 and Experiment 76, respectively, the former with a subcritical current and the latter with a
supercritical current. The differences between the two regimes are evident.
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