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ABSTRACT Free surface flow Confined flow
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) ) - - * Injected volume (all except dipole flow) V oc T * Maximum extension of the current Xy,RyocT™ £yl
Several environmental contaminants and remediation agents exhibit « Velocity of the current U ocT™
rheological complexity. Crude oil and displacing agents in EOR operations + First spatial moment (dipole flow) Q = const » Thickness of the current HoThH o £
» Position of pressure front L~T

are rheologically nonlinear. These applications prompt the need for a
theoretical analysis of non-Newtonian flow in natural porous and fractured
media, considering gravity-driven and confined flows, different geometries
and diverse boundary conditions. We present a review of the results Plane Plane Plane, vertical k Radial, vertical k Dipole, vertical k Plane, horizontal k Radial, horizontal k

obtained by our group concerning the modeling of power-law fluids, as this unbounded Radial channelized heterogeneity heterogeneity heterogenei heterogeneity heterogeneity

+ Velocity of the current Uy ocTh! « Aspect ratio and average gradient E/XN,E/XN,(ﬁﬁ/ﬁX),(ﬁﬁ/ﬁR)oc REE

. T F
« Pressure increment P-P=T"

onstant injecte ariable injected mass,
mass heterogeneity

constitutive law is amenable to self-similar solutions which may act as [ref. 5]

benchmarks even for more complex rheology. First, closed form results

were obtained for gravity currents advancing in plane or cylindrical a, n, K a,n, o a, n, ® a, n, ® a, n, ﬂ a, n, ﬂ o, n,d, ﬂ
geometry, deriving scalings for current length and thickness. Analogous Parameters a, n a, n = channel shape koczo-1 koc zo~1 Koc zo-1 koc XP, 18 k oc XB, 18 n,d koc xB, 18

results were obtained for confined flows in various geometries; here, K — oo, plane case homogeneous if = 1 homogeneous if = 1 homogeneous if = 1 homogeneous if =0 homogeneous if #=0 homogeneous if =0
scalings were obtained for pressure front position and pressure field.

Based on these benchmarks, the analytical models were refined introducing F.-1 a-2 a-3 ax -2k +1) | ont)o-1)+2]-nl@-1)-(0+3) | o(n+)o-1)+2]-20(0-1)-2(0w+2)  _ nl@-1)+2+w 20 -[4-pn+1)] | 2a-[6-Bx+1)] _ 1+d(1-n) 2a(n+1)-2[1+d(1-n)]+ fn+1)
two additional factors: medium heterogeneity and topographic control. The 2" P nt3 n+l+x(n+2) 2(n+2)+(n+1) w-1) 2An+3)+2n+1) w-1) 2n+3)+2n+1\w-1) | 2(m+2)-pn+1) | 2(m+3)-p(n+1) 1+n+d(1-n) 21+ n+d(1-n)]-Bn+1)
inherent heterogeneity of natural media was modeled within a simplified min

framework considering continuous variations of spatial properties. _

Topographic control was introduced considering flows in porous channels of Fz at+n @ +n ax + n(K + 1) a[(n H)(w 71)+ 2]+ 2n a[(n+l)(w71)+2]+2n u 2(a hi n) 2(a * n) S Z[a(l n)+n]
different shapes. Both factors proved relevant for the spreading of gravity n+2 n+3 n+1+x(n+2) 2(n+2)+ (n+1){0-1) 2n+3)+2(n+1)w-1) 2An+3)+2n+1f0-1) | 2(n+2)-B(r+1) | 2(n+3)-p(n+1) 1+n+d(1-n) 2[1+n +d(1—n)]—ﬂ(n +1)
currents as they influence the extent and shape of porous domain invaded I

by the contaminant, or reached by the remediation agent. F aln+1)-n [a(n+1)-2n  «la(n+1)-n] 2fa(n+1)-n] a(n+1)-2n 2n a(n+1)2-8)-2n | a(+1)2-p4)-4n dn a(2— pYn+1)-2dn
Our theoretical results were validated against multiple sets of experiments, 3 nt2 n+3 n+ltx(nt2) 2n+2)+(n+1)o-1) 2(n+3)+2(n+1)Yw-1) 2(n+3)+2(n+1)(a)—1) 2(n+2)- B +1) 2(n+3)-p(+1) 1+n+d(17n) 2[1+n+d(17n)]7ﬂ(n+1)
conducted with different combinations of spreading scenarios and types of

heterogeneity or channelization. Two basic experimental setups were ; e ] %
employed, adopting either reconstructed porous media made of glass F,;-F, n (a - 2) ”(0‘ - 3) nfax — 2k +1)] al2n—(n+1)w-1)]-4n af2n-(n+1f@-1)]-6n _ a2n-pn+1)]-4n | « [2n - B(n+1)]-6n

beads, or Hele-Shaw analogues. To this end, existing Hele-Shaw analogies n+2 n+3 n+l+x(n+2) 2(n+2)+(n+1)ew+1) 2(n+3)+2(n+1)fw-1) 2(n+2)-pn+1) 2(n+3)- B +1)

for porous flow of power-law fluids were extended to heterogeneous media. —————————

All scalings derived for the current front and thickness were confirmed by Experimental [ref. 1] [ref. 6] [ref. 3] [ref. 1] [ref. 5] [ref. 2] [ref. 1] _

our experiments, with an agreement between theory and experiments verification : : ) ’ : : ’

improving with time. A comparison between the key exponents governing
the propagation of current or pressure front allows to determine the relative
influence of rheology, heterogeneity, and domain shape and geometry. Results

THEORETICAL BACKGROUND
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* Plane (x) or radial geometry (r); time (t)
* Motion driven by density difference Ap between heavy intruding fluid and "
light fluid saturating the medium; also channel slope if inclined Confined flow REFERENCES
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