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A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures
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1. Applications in reservoir engineering of non Newtonian fluids 2. Flow of truncated power — law fluid in fractures
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas Non - Newtonian fluids Rheological truncated power — law model
and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, preeer Non linear relationship between shear stress v o
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Mining Engineering: drilling muds (suspensions of
solid particles), pollutants with complex rheology Exploitation of oil/gas reservoirs:

A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing

modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for

shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the

Hydraulic fracturing contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau

Largely used for optimal exploitation of oil, gas and thermal reservoirs. It produces rheological equation is well approxmated by the more tractable truncated power-law model (Lavrov, 2015). Results for flow of such fluids between
parallel walls are already available.
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o o | fractures in the rock formation that stimulate the flow of natural gas or oil, increasing

% the vp]umes thgt can pe recovered. Fractures are created_ by pumping large Flow in a variable aperture fracture 1) Parallel plates scheme Q Simplified model: geometric average o
. Hydraulic Fracturing quantities of fluids at high pressure down a wellbore and into the target rock results from two 1 — D cases
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as the fracture aperture is typically spatially variable. The equivalent flow aperture for
non-Newtonian fluids of power-law nature in single, variable aperture fractures has
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