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Gravity-driven flow of Herschel-Bulkley fluid in a fracture and in a 2D porous medium
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1. Implications of fluid rheology on flow in fractures and porous media 2. Model description for free-surface flow in a narrow fracture
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The behaviour of Herschel-Bulkley fluids flowing in a narrow channel (a fracture) has not been investigated to the same extent as flows in wide

HB model for a shear thinning/thickening fluid with yield stress: z

channels, and deserves an in-depth analysis due to the numerous practical applications of the process, such as polymer processing, heavy oil flow, L
gel cleanup in propped fractures, drilling processes. {r = (V" Ty Yy, Tt21, T = stress; . _,F p=ip N
A, L 5= | ambient fluid
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use. The models of most interest in drilling n s the fluid behavior index. 3 n > 1 shear-thickening _ _ _ impermeable bottom
fluid technology are the Bingham plastic, Figure. Diagram showing the setup of axes and fluid orientation in flow
Shear Shear power law and Herschel-Bulkley (HB). In many For free-surface flow through a narrow fracture of width Ly: through a narrow fracture (Hele-Shaw cell).
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Where 7, represents the cross gap stress ; f hx, Odx = Qte where k = Zry/(Angy) is a non d@ensmnal number (ratio
- - Darcy's law, valid for Newtonian fluids, has been extended, with various methodologies, to and y is the cross gap direction. Y between the yield stress and the gravity related stress) and 0
sivss et power-law non-Newtonian fluids and experimentally validated [1-2]. However, even though the is a velocity scale.
power-law approximation provides an accurate interpretation of fluid behaviour in several flow 3. Self-simil luti
conditions, it does not cover other classes of fluids exhibiting yield stress. These are better . oelr-similar soluti
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described by models such as Herschel-Bulkley three parameters [3], Cross (four parameters, [4]), E oci le ai 12 . t-simil
m and Carreau-Yasuda (four or five parameters, [5-6]). ora= 2, a velocity scale given by (Q/Ly) _ arises, and a self-similar (@) (b
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A theoretical model and its experimental validation for 2D flows of a Herschel-Bulkley fluid in a narrow fracture and in a porous medium is presented. o\ " K o 1™ =121 0806 WL,
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The theoretical model is general, while computations and experiments refer mainly to a specific situation (the injected volume quadratic in time) where f=nf=-¢ [f|f’ﬁ (l - —,) ('l + (—1) ,)} ) - %
a simple self-similar solution is available. An expansion method has been applied to handle, with some restrictions, the general case of an injected 7] n+ 7] 1.0 3
volume which is power-law over time; the general method has likewise been experimentally validated. .
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In order to validate the theoretical model, two series of experiments were conducted (i) in a Hele-Shaw cell with a small gap, simulating a fracture, where § = (L,2/Q) ' is the ratio between the two velocity scales. i 7
and (i) in the same cell with a larger gap and filled with glass beads of uniform size, reproducing a 2D porous medium. This system admits a simple solution, namely a linear profile for f(n) [7]. Figure. (a) Shape of the similarity solution in a Hele-Shaw cell (a = 2) for different
(@ ®) T : y Supposing a solution in the form f(n) = A(n, —n), for some constant = values of n; (b) plug regions.
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